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Abstract

We provide examples for negativity of structure constants of the stably canonical basis

of modified quantum gln and an analogous basis of modified quantum coideal algebra of

gln. In contrast, we construct the canonical basis of the modified quantum coideal algebra

of sln, establish the positivity of its structure constants, the positivity with respect to a

geometric bilinear form as well as the positivity of its action on the tensor powers of the

natural representation. The matrix coefficients of the transfer map on these Schur algebras

with respect to the canonical bases are shown to be positive. Formulas for canonical basis

of the iSchur algebra of rank one are obtained.

1. Introduction

1.1. In [1], Beilinson, Lusztig and MacPherson realized the quantum Schur

algebra S(n, d) geometrically in terms of pairs of partial flags of type A.

Furthermore, they construct the modified quantum group U̇(gln) via a sta-

bilization procedure from the family of algebras S(n, d) as d varies. The

IC construction provides a canonical basis for S(n, d) whose structure con-

stants are positive (i.e., in N[v, v−1]), which in turn via stabilization leads to

a distinguished bar-invariant basis (which we shall refer to as BLM or stably

canonical basis) for U̇(gln).
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Recently the constructions of [1] have been generalized to partial flag

varieties of type B and C in [2] (also see [7] for type D). A family of

iSchur algebras iS(n, d) was realized geometrically together with canonical

(=IC) bases whose structure constants lie in N[v, v−1]. Via a stabilization

procedure these algebras give rise to a limit algebra which was shown to

be isomorphic to the modified quantum coideal algebra iU̇(gln) of gln, and

which also admits a stably canonical basis. The appearance of the quantum

coideal algebra was inspired by [3] where a new approach to Kazhdan-Lusztig

theory of type B/C via a new theory of canonical bases arising from quantum

coideal algebras was developed. Even though the constructions for n odd

and even are quite different with the case of even n being more challenging

[3], one can carry out the construction in the even n case by relating to the

odd n case via a more subtle two-step stabilization [2].

1.2. The original motivation of this paper is to understand the positivity of

the stably canonical basis of the modified quantum coideal algebra iU̇ (gln).

To that end, we have to understand first the same positivity issue for U̇ (gln),

as U̇(gl⌊n
2
⌋) is simpler and also it appears essentially as a subalgebra of

iU̇ (gln) with compatible stably canonical bases. The canonical bases arising

from quantum groups of ADE type are widely expected to enjoy all kinds

of positivity (see [14, 15]), and there is no indication in the literature that

anything on U̇(gln) (or gln) differs substantially from its counterpart on

U̇(sln) (or sln).

To our surprise, the behavior of the BLM/stably canonical basis of

U̇(gln) turns out to be dramatically different, already for n = 2, from the

canonical basis of U̇ (sln). In particular, we provide examples that the struc-

ture constants of the stably canonical basis are negative, and that the stably

canonical basis of U̇(gln) fails to descent to the canonical basis of the finite-

dimensional simple U̇(gln)-modules. These examples, though not difficult,

are unexpected among the experts whom we have a chance to communicate

with, so we write them down hoping to clarify some confusion or false expec-

tation. The fundamental reason behind the failure of positivity of the BLM

basis and beyond is that the stabilization process is not entirely geometric

(when the involved matrices contain negative diagonal entries).

The structure constants of the canonical basis of U̇ (sln) are positive; this

follows easily from combining the positivity of the canonical (=IC) basis of

the Schur algebras [1] with a result of McGerty [18, Proposition 7.8] (or
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with a stronger result of [20], which confirmed Lusztig’s conjectures [16,

Conjectures 9.2, 9.3]). For the reader’s convenience, we make explicit this

positivity in Proposition 3.1 and supply a short proof, as it could not be

explicitly found in these earlier papers.

1.3. Now we focus on the modified quantum coideal algebra iU̇(sln), for

n ≥ 2. We construct a canonical basis for the modified quantum coideal

algebra iU̇ (sln) which shares many remarkable properties of the canonical

basis for U̇(sln). In particular, it has positive structure constants, and it

is characterized up to sign by the three properties: bar-invariance, integral-

ity, and almost orthonormality with respect to a bilinear form of geometric

origin. Moreover, it admits positivity with respect to the geometric bilinear

form. In addition, this canonical basis is compatible with Lusztig’s under a

natural inclusion U̇(sl⌊n
2
⌋) ⊆ iU̇(sln).

Our argument largely follows the line in McGerty’s work [18] for n odd

(the case for n even needs substantial new work), though we have avoided

using the non-degeneracy of the geometric bilinear form of iU̇ (sln), which

was not available at the outset. Instead, the non-degeneracy of the bilin-

ear form is replaced by arguments involving the stably canonical basis of

iU̇(gln) from [2] and the non-degeneracy eventually follows from the almost

orthonormality of the canonical basis which we establish.

We further show that the transfer map on the iSchur algebras sends

every canonical basis element to a positive sum of canonical basis elements

or zero. Some basic properties on the transfer map established in [8] are used

here. Moreover, the matrix coefficients (with respect to canonical basis) for

the action of any canonical basis element in iU̇(sln) on V⊗d are shown to

be positive, where V is the n-dimensional natural representation of iU̇(sln).

We remark that the transfer maps on the type A Schur algebras were earlier

studied in [16, 17, 20, 18].

As in [3, 2], the different behaviors in the cases for n odd and even force

us to carry out the studies of the two cases separately in this paper. The

case of odd n, indicated by the superscript , is easier and done first, while

the remaining case is indicated by the superscript ı. Let us set up some

notations used in the main text. For n odd and hence n = n − 1 even, we

shall denote U̇

(gln) = iU̇(gln), S

(n, d) = iS(n, d), U̇
ı
(gln) = iU̇ (gln), and

Sı(n, d) = iS(n, d).
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There is another purely representation theoretic approach in [4] toward

the bilinear forms and canonical bases for general quantum coideal alge-

bras including iU̇(sln), which nevertheless cannot address the positivity of

canonical bases. Note that the papers [16, 17, 20, 18] are mostly concerned

about the quantum Schur algebras and quantum groups of affine type A.

A geometric setting for the quantum coideal algebras of affine type will be

pursued elsewhere.

1.4. The paper is organized as follows. In Section 2, we construct examples

that a natural shift map (which is an algebra isomorphism) on U̇(gln) does

not preserve the BLM basis, that the structure constants of BLM basis for

U̇(gln) are negative, and that the BLM basis of U̇(gln) does not descend to

the canonical basis of a finite-dimensional simple module.

In Section 3, we show that the positivity of structure constants for the

canonical basis of U̇(sln) is an easy consequence of McGerty’s results. Then

we construct a positive basis for U̇(gln) with positive structure constants

by transporting the canonical basis of U̇(sln). We explain several positivity

results on the transfer map for Schur algebras.

In Sections 4, 5, and 6, we study the quantum coideal algebras and the

associated Schur algebras. In Section 4, we show the stably canonical basis

constructed in [2] for the modified quantum coideal algebra U̇

(gln) for n

odd does not have positive structure constants.

In Section 5, we set n to be odd, and study the behavior of the canonical

bases of the Schur algebras S(n, d) and varying d ≫ 0 under the transfer

maps. This allows us to construct a canonical basis for the modified quan-

tum coideal algebra U̇

(sln). We show that the structure constants of the

canonical basis of U̇

(sln) are positive. We further show that the transfer

map sends every canonical basis element to a positive sum of canonical basis

elements or zero.

In Section 6, we treat Sı(n, d) and U̇
ı
(sln) for n even, which is more

subtle. We show that the main results in Section 5 can be obtained in this

case as well though extra technical work is required.

In Section 7, we present explicit formulas of the canonical basis of the

rank one iSchur algebra in terms of the standard basis elements. Some

interesting combinatorial identities which seem new are obtained along the

way.
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2. Negativity of the Stably Canonical Basis of U̇(gln)

In this section, we construct several examples which show that a natural

shift map on U̇(gln) does not preserve the BLM basis, that the structure

constants of BLM basis for U̇(gln) are negative, and that the BLM basis of

U̇(gln) does not descend to the canonical basis of a finite-dimensional simple

modules.

2.1. The BLM preliminaries

We recall some basics from [1] (also see [6]). Let v be a formal parameter,

and A = Z[v, v−1]. Let Fq be a finite field of order q. Let N = {0, 1, 2, . . .}.
Let AS(n, d) (denoted by Kd in [1]) be the quantum Schur algebra over A,

which specializes at v =
√
q to the convolution algebra of pairs of n-step

partial flags in Fd
q . The algebra AS(n, d) admits a bar involution, a standard

basis [A], and a canonical (= IC) basis {A} parameterized by

Θd =
{
A = (aij) ∈ Matn×n(N)| |A| = d

}
,

where |A| = ∑
1≤i,j≤n aij . Set Θ := ∪d≥0Θd.

The multiplication formulas of the A-algebras AS(n, d) exhibit some

remarkable stability as d varies, which leads to a “limit” A-algebra K. The

bar involution on AS(n, d) induces a bar involution on K. The algebra

K has a standard basis [A] and a BLM (or stably canonical) basis {A},
parameterized by

Θ̃ = {A = (aij) ∈ Matn×n(Z) | aij ≥ 0 (i 6= j)}.

Denote by ǫi the i-th standard basis element in Zn. For 1 ≤ h ≤ n − 1,

a ≥ 1 and λ ∈ Zn, we denote by E
(a)
h,h+1(λ) the matrix whose (h, h + 1)th

entry is a, whose diagonal coincides with λ−aǫh+1, and all other entries are

zero. Similarly, denote by E
(a)
h+1,h(λ) the matrix whose (h + 1, h)th entry is

a, whose diagonal coincides with λ− aǫh, and all other entries are zero.

Recall the A-form of the modified quantum gln, denoted by AU̇(gln),

is generated by the idempotents 1λ (for λ ∈ Zn) and the divided powers

E
(a)
i 1λ, F

(a)
i 1λ (for a ≥ 1 and 1 ≤ i ≤ n − 1). It was shown in [1] that

there is an A-algebra isomorphism K ∼= AU̇(gln), which sends [E
(a)
h,h+1(λ)]
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to E
(a)
h 1λ and [E

(a)
h+1,h(λ)] to F

(a)
h 1λ, for all admissible λ, h and a. We shall

always make such an identification K ≡ AU̇(gln) and use only AU̇ (gln) in

the remainder of the paper.

We denote

S(n, d) = Q(v)⊗A AS(n, d), U̇(gln) = Q(v)⊗A AU̇ (gln).

The algebra U̇(gln) is a direct sum of subalgebras:

U̇(gln) =
⊕

d∈Z

U̇(gln)〈d〉, (2.1)

where U̇(gln)〈d〉 is spanned by elements of the form 1λu1µ with |µ| = |λ| = d

and u ∈ U̇(gln); here as usual we denote |λ| = λ1 + . . . + λn, for λ =

(λ1, . . . , λn) ∈ Zn.

The elements [E
(a)
h,h+1(λ)] for E

(a)
h,h+1(λ)∈Θd and [E

(a)
h+1,h(λ)] for E

(a)
h+1,h(λ)

∈ Θd (for all admissible h, a, λ) generate the A-algebra AS(n, d).

Let 0i,j be the i × j zero matrix. Fix two positive integers m,n such

that m < n. Let k ∈ Z. By using the multiplication formulas in [1, 4.6], we

note that the assignment

[A] 7→
[

A 0m,n−m

0n−m,m kI

]

defines an algebra embedding

ιkm,n : AU̇(glm) −→ AU̇(gln).

The following lemma, which basically follows from the definition of the

BLM basis, will be used later on.

Lemma 2.1. Let m,n, k ∈ Z with 0 < m < n. Then

ιkm,n({A}) =
{

A 0m,n−m

0n−m,m kI

}
for all A ∈ Θ̃.
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2.2. Incompatibility of BLM bases under the shift map

Given p ∈ Z, it follows from the multiplication formulas [1, 4.6] that

there exists an algebra isomorphism (called a shift map)

ξp : U̇(gln) −→ U̇(gln), ξp([A]) = [A+ pI], (2.2)

for all A such that A is either diagonal, Eh,h+1(λ) or Eh+1,h(λ) for some

1 ≤ h ≤ n − 1 and I denotes the identity matrix. Note that ξp commutes

with the bar involution and ξp preserves the A-form AU̇(gln). Note also that

ξ−1
p = ξ−p.

Introduce the (not bar-invariant) quantum integers and quantum bino-

mials, for m ∈ Z and b ∈ N,

[
m

b

]
=

[
m

b

]

v

=
∏

1≤i≤b

v2(m−i+1) − 1

v2i − 1
, and [m] =

[
m

1

]
=

v2m − 1

v2 − 1
. (2.3)

Lemma 2.2. Let n = 2. If a21 ≥ 1, a22 ≤ −2 and p ≤ 0, then

{
p 1

a21 a22 + p

}
=

[
p 1

a21 a22 + p

]
− va22+1[p + 1]

[
p+ 1 0

a21 − 1 a22 + p+ 1

]
.

Proof. We denote the multiplication in U̇(gl2) by ∗ to avoid confusion with

the usual matrix multiplication. We will repeatedly use the fact that [A] is

bar-invariant (divided powers) for A upper- or lower-triangular.

The formula [1, 4.6(a)] gives us (for all a11, a22 ∈ Z and a21 ≥ 1)

[
a11 1

0 a21 + a22

]
∗
[
a11 0

a21 a22 + 1

]

=

[
a11 1

a21 a22

]
+ va11−a22−1 [a11 + 1]

[
a11 + 1 0

a21 − 1 a22 + 1

]
. (2.4)

By applying the bar map to (2.4) and then comparing with (2.4) again, we

have

[
a11 1

a21 a22

]
=

[
a11 1

a21 a22

]
+

(
va11−a22−1 [a11 + 1]− v−a11+a22+1[a11 + 1]

)
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×
[
a11 + 1 0

a21 − 1 a22 + 1

]
.

By a change of variables we obtain that (for p ∈ Z)

[
p 1

a21 a22+p

]
=

[
p 1

a21 a22+p

]
+

(
v−a22−1 [p+ 1]− va22+1[p+ 1]

)

×
[

p+ 1 0

a21 − 1 a22 + p+ 1

]
. (2.5)

Hence we can write
{

p 1

a21 a22 + p

}
=

[
p 1

a21 a22 + p

]
+ x

[
p+ 1 0

a21 − 1 a22 + p+ 1

]
,

for some x∈v−1Z[v−1]. It follows by this and (2.5) that x−x̄=v−a22−1 [p+ 1]

−va22+1[p+ 1].

Using the assumption that a22 ≤ −2 and p ≤ 0, we have va22+1[p+1] ∈
v−1Z[v−1] and hence x = −va22+1[p+ 1]. The lemma follows. ���

Proposition 2.3. The shift map ξp : U̇(gln) → U̇(gln) (for p 6= 0) does

not always preserve the BLM basis, for n ≥ 2. More explicitly, for n = 2, if

a21 ≥ 1, a22 ≤ −2 and p < 0, then

ξp

{
0 1

a21 a22

}
=

{
p 1

a21 a22 + p

}
+

(
v−a22−3 [p] + va22+3[p]

)

×
{

p+ 1 0

a21 − 1 a22 + p+ 1

}
.

Proof. We first verify the formula for n = 2. By applying (2.4) twice, we

have

ξp

[
a11 1

a21 a22

]
=

[
a11+p 1

a21 a22 + p

]
+v−a11−a22−3 [p]

[
a11+p+1 0

a21 − 1 a22+p+1

]
.

(2.6)
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The formula in Lemma 2.2 specializes at p = 0 to be

{
0 1

a21 a22

}
=

[
0 1

a21 a22

]
− va22+1

[
1 0

a21 − 1 a22 + 1

]
.

Hence, using (2.6) we have

ξp

{
0 1

a21 a22

}
=

[
p 1

a21 a22+p

]
+(v−a22−3[p]−va22+1)

{
p+ 1 0

a21 − 1 a22+p+1

}
,

(2.7)

which can be readily turned into the formula in the proposition by Lemma

2.2.

If ξp preserved the BLM basis, then we would have ξp({A}) = {A+ pI}

by definitions, for all A. Hence the formula for ξp

{
0 1

a21 a22

}
(with p < 0)

together with the fact ξ−1
p = ξ−p shows that ξp (for p 6= 0) does not preserve

the BLM basis.

The proposition for general n ≥ 2 follows from Lemma 2.1. ���

Remark 2.4. It can be shown similarly that

ξp

{
0 1

a21 a22

}
6=

{
p 1

a21 a22 + p

}
, if a21 ≥ 1, a22 ≤ −3 and p > 0.

Indeed precise formulas for both sides of this inequality can be obtained by

(2.5) and (2.7).

Remark 2.5. There exists a surjective algebra homomorphism Φd : U̇(gln) →
S(n, d) which sends [A] to [A] for A ∈ Θd or to 0 otherwise. It was shown

in [9] that Φd preserves the canonical bases, sending {A} to {A} for A ∈ Θd

or to 0 otherwise. Making a gln analogy with [16, 9.3], one might modify

the map Φd to define a new algebra homomorphism Φ′
d : U̇(gln) → S(n, d)

as follows: for u ∈ U̇(gln)〈d − pn〉 with p ∈ Z, we let Φ′
d(u) = Φd(ξp(u));

also let Φ′
d| ˙
U (gln)〈d

′〉
= 0 unless d′ ≡ dmodn. It follows by Proposition 2.3

and Remark 2.4 that Φ′
d : U̇ (gln) → S(n, d) does not preserve the canonical

bases for general d and n.
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2.3. Negativity of BLM structure constants

Proposition 2.6. The structure constants for the algebra U̇(gln) with re-

spect to the BLM basis are not always positive, for n ≥ 2. More explicitly,

for n = 2, we have

{
0 1

1 −3

}
∗
{
0 1

1 −3

}
= (v + v−1)2

{
−1 2

2 −4

}
− (2v−2 + 1 + 2v2)

{
0 1

1 −3

}

− (v−4 + v−2 + 2 + v2 + v4)

{
1 0

0 −2

}
.

Proof. It suffices to check the example for n = 2 in view of Lemma 2.1. We

will repeatedly use the fact that [A] is bar-invariant (divided powers) for A

upper- or lower-triangular.

We claim the following identities hold:

{
0 1

1 −3

}
=

[
0 1

1 −3

]
− v−2

[
1 0

0 −2

]
, (2.8)

{
−1 2

2 −4

}
=

[
−1 2

2 −4

]
,

{
1 0

0 −2

}
=

[
1 0

0 −2

]
. (2.9)

Indeed, (2.8) follows by Lemma 2.2, and the second identity of (2.9) is clear.

Moreover, by [1, 4.6(b)] and (2.8), we have

[
−1 2

2 −4

]
=

[
1 0

2 −4

]
∗
[
1 2

0 −4

]
+ (v−2 + 1 + v2)

[
0 1

1 −3

]

−(v−4 + v−2 + 1)

[
1 0

0 −2

]

=

[
1 0

2 −4

]
∗
[
1 2

0 −4

]
+ (v−2 + 1 + v2)

{
0 1

1 −3

}
,

which is bar invariant. Hence it must be a BLM basis element, whence (2.9).

By [1, 4.6(a),(b)] (also see (2.4)), we have

[
0 1

1 −3

]
=

[
0 1

0 −2

]
∗
[
0 0

1 −2

]
− v2

[
1 0

0 −2

]
, (2.10)
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[
0 0

1 −2

]
∗
[
0 1

1 −3

]
= (v + v−1)

[
−1 1

2 −3

]
− (1 + v2)

[
0 0

1 −2

]
, (2.11)

[
0 1

0 −2

]
∗
[
−1 1

2 −3

]
= (v + v−1)

[
−1 2

2 −4

]
, (2.12)

[
0 1

0 −2

]
∗
[
0 0

1 −2

]
=

[
0 1

1 −3

]
+ v2

[
1 0

0 −2

]
. (2.13)

Therefore we have
{
0 1

1 −3

}
∗
{
0 1

1 −3

}
=

[
0 1

0 −2

]
∗
[
0 0

1 −2

]
∗
[
0 1

1 −3

]
− v−2

[
0 1

0 −2

]
∗
[
0 0

1 −2

]

− (v2 + v−2)

[
0 1

1 −3

]
+ v−2(v2 + v−2)

[
1 0

0 −2

]

= (v+v−1)2

[
−1 2

2 −4

]

− (2v−2 + 1 + 2v2)

[
0 1

1 −3

]
+(v−4−v2−v4)

[
1 0

0 −2

]
,

(2.14)

where the first identity above uses (2.8) and (2.10), while the second identity

above uses (2.11), (2.12) and (2.13).

With the help of (2.8) and (2.9), a direct computation shows the right-

hand side of the desired identity in the proposition is also equal to (2.14).

The proposition is proved. ���

2.4. Incompatibility of BLM bases for U̇ and L(λ)

Denote by L(λ) the U̇(gln)-module of highest weight λ with a highest

weight vector u+λ .

Proposition 2.7. There exists a dominant integral weight λ and some BLM

basis element C ∈ U̇(gln) (for n ≥ 2) such that Cu+λ is not a canonical basis

element of L(λ). More explicitly, for n = 2, if a21 ≥ 1, a22 ≤ −2 and p ≤ 0,
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λ = (p+ a21, a22 + p+ 1), then

{
p 1

a21 a22 + p

}
u+λ = va22+2p+3[−a22 − 2p − 3]F (a21−1)u+λ .

Proof. It suffices to verify such an example for n = 2 by using Lemma 2.1

where k is chosen such that k ≤ a22 + p+ 1.

By [1, 4.6], we have

[
p+ 1 0

a21 a22 + p

]
∗
[
p+ a21 1

0 a22 + p

]

=

[
p 1

a21 a22 + p

]
+ va22−1[a22 + p+ 1]

[
p+ 1 0

a21 − 1 a22 + p+ 1

]
.

By plugging the above equation into the formula in Lemma 2.2 (the assump-

tion of which is satisfied), we obtain that

{
p 1

a21 a22 + p

}
=

[
p+ 1 0

a21 a22 + p

]
∗
[
p+ a21 1

0 a22 + p

]

+ va22+2p+3[−a22 − 2p− 3]

[
p+ 1 0

a21 − 1 a22 + p+ 1

]
,

where we have used the identity

−va22+1[p+ 1]− va22−1[a22 + p+ 1] = va22+2p+3[−a22 − 2p − 3]

(note this is a bar-invariant quantum integer).

Consider the dominant integral weight λ = (p + a21, a22 + p + 1). We

have
{

p 1

a21 a22 + p

}
u+λ = va22+2p+3[−a22 − 2p− 3]

[
p+ 1 0

a21 − 1 a22 + p+ 1

]
u+λ

= va22+2p+3[−a22 − 2p− 3]F (a21−1)u+λ ,

which is not a canonical basis element in L(λ) if −a22 − 2p− 3 > 1. ���

Remark 2.8. It is shown in [9, Proposition 4.7] that the BLM basis descends
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to the canonical basis of L(λ) when the dominant highest weight λ is assumed

to be in Zn
≥0.

3. Positivity of Canonical Basis of U̇ (sln) and a Basis of U̇(gln)

In this section we exhibit various kinds of positivity of the canonical

basis of U̇(sln) and Schur algebras in relation to the transfer maps, most of

which were known by experts though probably in some other ways. We also

construct a positive basis for U̇(gln) by transporting the canonical basis of

U̇(sln) to U̇ (gln).

3.1. The algebras U̇(gln) vs U̇ (sln)

We identify the weight lattice for gln as Zn (regarded as the set of integral

diagonal n×n matrices in Θ̃ if we think in the setting of K), and we define

an equivalence ∼ on Zn by letting µ ∼ ν if and only if µ − ν = k(1, . . . , 1)

for some k ∈ Z. Denote by µ the equivalence class of µ ∈ Zn, and we

identify the set of these equivalence classes Z̄n as the weight lattice of sln.

We denote by |µ| ∈ Z/nZ the congruence class of |µ| modulo n. For later

use we also extend this definition to define an equivalence relation ∼ on Θ̃:

A ∼ A′ if and only if A−A′ = kI for some k ∈ Z. We set

Θ
n
= Θ̃/ ∼ . (3.1)

As a variant of U̇(gln), the modified quantum group U̇(sln) admits a

family of idempotents 1µ, for µ ∈ Z̄n. The algebra U̇(sln) is naturally a

direct sum of n subalgebras:

U̇(sln) =
⊕

d̄∈Z/nZ

U̇(sln)〈d̄〉, (3.2)

where U̇(sln)〈d̄〉 is spanned by 1µU̇(sln)1λ, where |µ| ≡ |λ| ≡ dmodn. It

follows that AU̇ (sln) = ⊕d̄∈Z/nZ AU̇(sln)〈d̄〉. We denote by πd̄ : U̇(sln) →
U̇(sln)〈d̄〉 the projection to the d̄-th summand.

There exists a natural algebra isomorphism

℘d : U̇(gln)〈d〉 ∼= U̇(sln)〈d〉 (∀d ∈ Z), (3.3)
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which sends 1λ, Ei1λ and Fi1λ to 1λ̄, Ei1λ and Fi1λ respectively, for all r,

i, and all λ with |λ| = d. This induces an isomorphism ℘λ : U̇(gln)1λ
∼=

U̇(sln)1λ, for each λ ∈ Zn, and also an isomorphism µ℘λ : 1µU̇(gln)1λ
∼=

1µU̇(sln)1λ, for all λ, µ ∈ Zn with |λ| = |µ|. (These isomorphisms further

induce similar isomorphisms for the corresponding A-forms, which match

the divided powers.) Combining ℘d for all d ∈ Z gives us a homomorphism

℘ : U̇(gln) → U̇(sln). It follows by definitions that

℘ ◦ ξp = ℘, for all p ∈ Z. (3.4)

Recall from Remark 2.5 the surjective algebra homomorphism Φd :

U̇(gln) → S(n, d). The algebra homomorphism φd : U̇(sln) → S(n, d) is

defined as the composition

φd : U̇(sln)
πd̄−→ U̇(sln)〈d̄〉

℘d−→ U̇(gln)〈d〉
Φd−→ S(n, d). (3.5)

It follows that φd|
U̇(sln)〈d̄′〉

= 0 if d̄′ 6= d̄, and we have a surjective homo-

morphism φd : U̇(sln)〈d̄〉 → S(n, d). Clearly φd preserves the A-forms.

3.2. Positivity of canonical basis for U̇(sln)

The canonical basis of AU̇(sln) (and hence of U̇ (sln)) is defined by

Lusztig [15], and it is further studied from a geometric viewpoint by McGerty

[18]. The following positivity for canonical basis could (and probably should)

have been formulated explicitly in [18], as there is no difficulty to establish

it therein. Given an n× n matrix A, we shall denote

pA = A+ pI,

where I is the identity matrix.

Proposition 3.1. The structure constants of the canonical basis for the

algebra U̇ (sln) lie in N[v, v−1], for n ≥ 2.

Proof. Let Ḃ(sln) = ∪d̄∈Z/nZḂ(sln)〈d̄〉 be the canonical basis for U̇(sln),

where Ḃ(sln)〈d̄〉 is a canonical basis for U̇(sln)〈d̄〉. Let a, b ∈ Ḃ(sln)〈d̄〉, for
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some d̄. We have, for some suitable finite subset Ω ⊂ Ḃ(sln)〈d̄〉,

a ∗ b =
∑

z∈Ω

P z
a,b z. (3.6)

It is shown [18] that there exists a positive integer d in the congru-

ence class d̄ and A,B,Cz ∈ Θd such that φd+pn(a) = {pA}, φd+pn(b) =

{pB}, φd+pn(z) = {pCz}, for all p ≫ 0. Hence applying φd+pn to (3.6) we

have

{pA} ∗ {pB} =
∑

z∈Ω

P z
a,b {pCz}.

The structure constants for the canonical basis of the Schur algebra S(n, d+

pn) are well known to be in N[v, v−1] thanks to the intersection cohomology

construction [1], and hence P z
a,b ∈ N[v, v−1].

Since the algebra U̇(sln) is a direct sum of the algebras U̇ (sln)〈d̄〉 for

d̄ ∈ Z/nZ, the proposition is proved. ���

Remark 3.2. The positivity as in Proposition 3.1 was conjectured by Lusztig

[15] for modified quantum group of symmetric type. There is a completely

different proof of such a positivity in ADE type via categorification tech-

nique by Webster [22]. The argument here also shows the positivity of the

canonical basis of modified quantum affine sln, based again on McGerty’s

work.

3.3. Transfer map and positivity

The transfer map for the v-Schur algebras

φd+n,d : AS(n, d+ n) −→ AS(n, d),

or φd+n,d : S(n, d+n) → S(n, d) by a base change, was defined geometrically

by Lusztig [17] and can also be described algebraically as follows. Set Ei;d =∑
λ[Ei,i+1(λ)] summed over all Ei,i+1(λ) ∈ Θd, Fi;d =

∑
λ[Ei+1,i(λ)] summed

over all Ei+1,i(λ) ∈ Θd, and Ka;d =
∑

b∈Nn,|b|=d v
a·b1b. (Here a ·b =

∑
i aibi

for a = (a1, . . . , an).) Then S(n, d) is generated by these elements (see [1]),

and the transfer map φd+n,d is characterized by

φd+n,d(Ei;d+n) = Ei;d, φd+n,d(Fi;d+n) = Fi;d, φd+n,d(Ka;d+n) = v|a|Ka;d.
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Recall the homomorphism φd : U̇ (sln) → S(n, d) from (3.5). We have

the following commutative diagram by matching the Chevalley generators

(see [16, 17]):

(3.7)

Proposition 3.3. The transfer map φd+n,d : S(n, d + n) −→ S(n, d) sends

each canonical basis element to a sum of canonical basis elements with (bar

invariant) coefficients in N[v, v−1] or zero.

Proof. Recall that φd+n,d is the composition (ξ ⊗ χ)∆, where ξ and ∆ are

defined in [17, 2.2, 2.3]. The positivity of ξ with respect to the canonical

bases is clear from the definition (as it is just a rescaling operator by some

v-powers depending on the weights). The positivity of ∆ with respect to the

canonical bases follows by its well-known identification with (the function

version of) a hyperbolic localization functor and then appealing to the main

theorem of Braden [5].

So it suffices to show the positivity of the homomorphism χ : S(n, n) −→
Q(v). Recall that the function χ is defined by χ([A]) = v−dA det(A) where

dA =
∑

i≥k,j<l aijakl. (Note that χ([A]) = 0 unless A is a permutation

matrix.) We claim that

χ({A}) =
{
1, if A = I,

0, if A 6= I
(3.8)

(recall I is the identity n × n matrix). It suffices to show that the claim

holds for all permutation matrices (which form the symmetric group Sn),

and we prove this by induction on the length ℓ(w) for w ∈ Sn. Recall [1]

that the canonical basis {w} for w ∈ Sn is simply the Kazhdan-Lusztig

basis for Sn. When w = I, the claim holds trivially. Let si be the ith

elementary permutation matrix (corresponding to the ith simple reflection),

for 1 ≤ i ≤ n − 1. It is straightforward to check by [1, Lemma 3.8] that

{si} = [si] + v−1[I]. Hence χ({si}) = v−1 det si + v−1 det I = 0. Let w ∈ Sn
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with ℓ(w) > 1. We can find an si such that w = siw
′ with ℓ(w′) + 1 = ℓ(w).

By the construction of the Kazhdan-Lusztig basis [12, §2.2, p.170], we have

{si} ∗ {w′} = {w} +
∑

x:ℓ(x)<ℓ(w′),ℓ(six)<ℓ(x)

µ(x,w′){x}, µ(x,w′) ∈ A.

(Note the x in the summation satisfies x 6= I.) Now applying the algebra

homomorphism χ to the above identity and using the induction hypothesis,

we see that χ({w}) = 0. This finishes the proof of the claim and hence of

the theorem. ���

Proposition 3.4. The map φd : U̇(sln) → S(n, d) sends each canonical basis

element to a sum of canonical basis elements with (bar invariant) coefficients

in N[v, v−1] or zero.

Proof. Let b ∈ Ḃ(sln). We can assume that b ∈ Ḃ(sln)〈d̄〉 as otherwise we

have φd(b) = 0. By [18, Corollary 7.6, Proposition 7.8], φd+pn(b) is a canon-

ical basis element in S(n, d + pn), for some p ≫ 0. Using the commutative

diagram (3.7) repeatedly, we have

φd(b) = φd+n,d φd+2n,d+n · · ·φd+pn,d+pn−n

(
φd+pn(b)

)
.

It follows by repeatedly applying Proposition 3.3 that the term on the right-

hand side above is a sum of canonical basis elements in S(n, d) with coeffi-

cients in N[v, v−1]. ���

Remark 3.5. Proposition 3.3 is partly inspired by [18, Remark 7.10], and

probably it can also be proved by a possible functor realization of the transfer

map, whose existence was hinted at loc. cit. Note that stronger versions

of Propositions 3.3 and 3.4 hold (which state that the canonical bases are

preserved by φd+n,d and φd), according to the main results of [20] (which

proved Lusztig’s conjectures [16]). Our short yet transparent proofs of the

weaker statements above might be of interest to the reader, and they will

be adapted in later sections to the modified quantum coideal algebras and

their associated Schur algebras.

Recall [11] that the Schur-Jimbo (S(n, d),HSd
)-duality on V⊗d can be

realized geometrically, where V is n-dimensional and HSd
is the Iwahori-

Hecke algebra associated to the symmetric group Sd. Denote by B(nd) the

canonical basis of V⊗d. The canonical bases on V⊗d as well as on S(n, d)
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are realized as simple perverse sheaves, and the action of S(n, d) on V⊗d

is realized in terms of a convolution product. Hence we have the following

positivity.

Proposition 3.6. [11] The action of S(n, d) on V⊗d with respect to the cor-

responding canonical bases is positive in the following sense: for any canon-

ical basis element a of S(n, d) and any b ∈ B(nd), we have

a ∗ b =
∑

b′∈B(nd)

Cb′

a,b b
′, where Cb′

a,b ∈ N[v, v−1].

We shall take the liberty of saying some action is positive in different

contexts similar to the above proposition. Now that U̇(sln) acts on V⊗d

naturally by composing the action of S(n, d) on V⊗d with the map φd :

U̇(sln) → S(n, d). We have the following corollary of Propositions 3.4 and

3.6.

Corollary 3.7. The action of U̇(sln) on V⊗d with respect to the correspond-

ing canonical bases is positive.

Note by [15, 27.1.7] that the d-th symmetric power SdV (i.e., the simple

module of highest weight being d times the first fundamental weight) is a

based submodule of V⊗d in the sense of [15, Chap. 27], and hence Sd1V ⊗
· · · ⊗ SdsV is also a based submodule of V⊗d, where the positive integers di
satisfy d1 + . . . + ds = d. The following is now a consequence (and also a

generalization) of Corollary 3.7.

Corollary 3.8. The action of U̇(sln) on Sd1V⊗ · · · ⊗ SdsV with respect to

the corresponding canonical bases is positive.

3.4. A positive basis for U̇(gln)

Note that the BLM basis of U̇(gln) restricts to a basis of U̇ (gln)〈d〉,
which does not have positive structure constants in general by Proposition

2.6. However, in light of the positivity in Proposition 3.1, one can transport

the canonical basis on U̇(sln)〈d〉 to U̇(gln)〈d〉 via the isomorphism ℘d in

(3.3), which has positive structure constants. Let us denote the resulting

positive basis (or canonical basis) on U̇(gln) = ⊕d∈ZU̇(gln)〈d〉 by Bpos(gln).

By definition, the basis Bpos(gln) is invariant under the shift maps ξp for

p ∈ Z. Summarizing we have the following.
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Proposition 3.9. There exists a positive basis Bpos(gln) for AU̇(gln) (and

also for U̇(gln)), which is induced from the canonical basis for AU̇(sln).

Recall a 2-category U̇(gln) which categorifies U̇(gln) in [19] is obtained

by simply relabeling the objects for the Khovanov-Lauda 2-category which

categorifies U̇(sln) in [13]. We expect that the projective indecomposable

1-morphisms in U̇(gln) categorify the positive basis Bpos(gln) (instead of the

BLM basis which has no positivity).

4. Modified Quantum Coideal Algebras U̇

(gln) and U̇


(sln),

for n Odd

In this section and next section, we fix 2 odd positive integers n,D such

that

n = 2r + 1, D = 2d+ 1.

We will almost exclusively use the notation n and d (instead of r and D).

We study the canonical bases for the modified quantum coideal algebras

U̇

(gln) and U̇


(sln) as well as the Schur algebras S(n, d). We will again

use the notation {A}, [A], {A}d etc for the bases of these algebras, as these

sections are independent from the earlier ones to a large extent. When we

occasionally need to refer to similar bases in type A from earlier sections,

we shall add a superscript a.

In this section, we show that the stably canonical basis constructed in

[2] for the modified quantum coideal algebra U̇

(gln) does not have posi-

tive structure constants. We also formulate some basic connections between

U̇

(gln) and U̇


(sln).

4.1. Schur algebras and quantum coideal algebra

We first recall some basics from [2].

Let Fq be a finite field of odd order q. Let AS
(n, d) (denoted by S

in [2]) be the Schur algebra over A, which specializes at v =
√
q to the

convolution algebra of pairs of n-step partial isotropic flags in F2d+1
q (with

respect to some fixed non-degenerate symmetric bilinear form). The algebra
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AS
(n, d) admits a bar involution, a standard basis [A]d, and a canonical (=

IC) basis {A}d parameterized by

Ξd =
{
A = (aij) ∈ Θ2d+1

∣∣aij = an+1−i,n+1−j,∀i, j ∈ [1, n]
}
. (4.1)

Set Ξ := ∪d≥0Ξd.

The multiplication formulas of the A-algebras AS
(n, d) exhibits some

remarkable stability as d varies, which leads to a “limit” A-algebra K.

The bar involution on AS
(n, d) induces a bar involution on K [2, §4.1].

The algebra K has a standard basis [A] and a stably canonical basis {A},

parameterized by

Ξ̃ =
{
A =(aij) ∈ Matn×n(Z) | aij ≥ 0 (i 6= j),

ar+1,r+1 ∈ 2Z+ 1, aij = an+1−i,n+1−j (∀i, j)
}
. (4.2)

Recall (cf. [3, 2] and the references therein) there is a quantum coideal

algebra U
(gln) which can be embedded in U(gln), and (U(gln),U

(gln))

form a quantum symmetric pair in the sense of Letzter. For our purpose

here, its modified version U̇

(gln) is more directly relevant; we recall its

presentation below from [2, §4.4] to fix some notation. Let

Z
n =

{
µ ∈ Zn|µi = µn+1−i (∀i) and µ(n+1)/2 is odd

}
.

Let Eθ
ij be the n × n matrix whose (k, l)-entry is equal to δk,iδl,j +

δk,n+1−iδl,n+1−j. Given λ ∈ Z

n, we introduce the short-hand notation λ±αi

whose jth entry is equal to λj ∓ (δi,j + δn+1−i,j) ± (δi+1,j + δn−i,j). Recall

n = 2r + 1. The algebra U̇

(gln) is the Q(v)-algebra generated by 1λ, ei1λ,

1λei, fi1λ and 1λfi, for i = 1, . . . , r and λ ∈ Z

n, subject to the following

relations, for i, j = 1, . . . , (n − 1)/2 and λ, λ′ ∈ Z

n:
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x1λ1λ′x′ = δλ,λ′x1λx
′, for x, x′ ∈ {1, ei, ej , fi, fj},

ei1λ = 1λ−αi
ei,

fi1λ = 1λ+αi
fi,

ei1λfj = fj1λ−αi−αj
ei, if i 6= j,

ei1λfi = fi1λ−2αi
ei +

vλi+1−λi−vλi−λi+1

v−v−1 1λ−αi
, if i 6= n−1

2 ,

(e2i ej + eje
2
i )1λ = (v + v−1)eiejei1λ, if |i− j| = 1,

(f2
i fj + fjf

2
i )1λ = (v + v−1)fifjfi1λ, if |i− j| = 1,

eiej1λ = ejei1λ, if |i− j| > 1,

fifj1λ = fjfi1λ, if |i− j| > 1,

(f2
r er−(v+v−1)frerfr+erf

2
r )1λ =−(v+v−1)

(
vλr+1−λr−2+vλr−λr+1+2

)
fr1λ,

(e2rfr−(v+v−1)erfrer+fre
2
r)1λ =−(v+v−1)

(
vλr+1−λr+1+vλr−λr+1−1

)
er1λ.

It was shown in [2, §4.5] that there is an A-algebra isomorphism K ∼=
AU̇


(gln), which matches the Chevalley generators. we shall always make

such an identificationK ≡ AU̇

(gln) and use only AU̇


(gln) in the remainder

of the paper.

Given m ∈ Z with 0 ≤ 2m ≤ n, let Jm be an m × m matrix whose

(i, j)-th entry is δi,m+1−j . Recalling the definition of Θ̃ depends on n from

Section 2.1, we shall write Θ̃n for Θ̃ in this paragraph and allow n vary, and

so in particular Θ̃m makes sense. To a matrix A ∈ Θ̃m and k ∈ Z, we define

a matrix

τkm,n(A) =



A 0 0

0 2kI + ε 0

0 0 JmAJm




where ε is the (n− 2m)× (n− 2m) matrix whose only nonzero entry is the

very central one, which equals 1. Thus, we have an embedding

τkm,n : Θ̃m −→ Ξ̃, A 7→ τkm,n(A).

By comparing the multiplication formulas [1, 4.6] in AU̇(glm) and those in

AU̇

(gln) [2, (4.5)-(4.7)], we have an algebra embedding, also denoted by

τkm,n,
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τkm,n : AU̇(glm) −→ AU̇

(gln),

a[A] 7→ [τkm,n(A)]. (4.3)

(We recall here our convention of using the superscript a to denote the

corresponding basis in the type A setting from earlier sections.) Note that

the homomorphism τkm,n commutes with the bar involutions on AU̇(glm) and

AU̇

(gln). The following lemma is immediate from the definitions.

Lemma 4.1. Suppose that 0 ≤ m ≤ (n− 1)/2 and k ∈ Z. Then τkm,n(
a{A})

= {τkm,n(A)}, for all A ∈ Θ̃m.

We denote

S(n, d) = Q(v)⊗A AS
(n, d), U̇


(gln) = Q(v)⊗A AU̇


(gln).

The quantum coideal algebra U
(sln) can be embedded into (and hence

identified with a subalgebra of) U(sln); cf. [3]. We define an equivalence

relation ∼ on Z

n: µ ∼ µ′ if µ − µ′ = m

∑n
i=1 ǫi for some m ∈ 2Z. Let µ̄

denote the equivalence class of µ. Put

∧Z
n = Z

n/ ∼ .

We define the Q(v)-algebra U̇

(sln) formally in the same way as U̇


(gln)

above except now that the weights λ, λ′ run over ∧Z

n (instead of Z

n). There

exists a bar involution on U̇

(sln) (as well as on U̇


(gln)) which fixes all

the generators. The A-form AU̇

(sln) of the Q(v)-algebra U̇


(sln) (as well

as the A-form AU̇

(gln) of U̇


(gln)) is generated by the divided powers

e
(a)
i 1λ, f

(a)
i 1λ for all admissible i, a, λ.

For later use we define an equivalence relation ∼ on Ξ̃: A ∼ A′ if and

only if A−A′ = mI, for some m ∈ 2Z. We set

Ξ̂ = Ξ̃/ ∼ . (4.4)

4.2. Negativity of stably canonical basis for U̇

(gln)

For a, b ∈ Z, let

A=



a 1 0

0 b 0

0 1 a


 , B=



a 0 0

1 b 1

0 0 a


 , C=



a− 1 1 0

1 b 1

0 1 a− 1


 ,D=



a 0 0

0 b+ 2 0

0 0 a


 .
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The following example arises from discussions with Huanchen Bao.

Proposition 4.2. The structure constants for the stably canonical basis of

U̇

(gln) are not always positive, for n ≥ 3. More explicitly, for n = 3 and

for a, b ∈ Z with a < b ≤ −2, the following identity holds in U̇

(gl3):

{B} ∗ {A} = {C}+ (vb+a + vb−a)[b+ 1]{D}

where [b+ 1] ∈ Z≤0[v, v
−1].

Proof. It suffices to check the identity for n = 3, since the general case

for n ≥ 4 follows easily from Lemmas 4.1 and 2.6. By using [2, (4.7)] we

compute that
[B] ∗ [A] = [C] + v−avb[b+ 1][D]. (4.5)

Observe that

{D} = [D], {A} = [A], {B} = [B]

since D is diagonal, [A] and [B] are the Chevalley generators of U̇

(gl3).

Also note that vb[b+ 1] is a bar-invariant quantum integer. Applying the

bar involution to (4.5) and comparing with (4.5) again, we have

[C]− [C] = (v−a − va)vb[b+ 1][D]. (4.6)

By assumption that a < b ≤ −2, we have va+b[b+ 1] ∈ v−1Z<0[v
−1],

and hence from (4.6) we obtain that

{C} = [C]− va+b[b+ 1][D].

Now the equation (4.5) can be rewritten as

{B} ∗ {A} = {C}+ (va + v−a)vb[b+ 1][D].

It is clear that vb[b+ 1] = −(v−b + v−b−2 + . . .+ vb+2 + vb) ∈ Z≤0[v, v
−1] for

b ≤ −2. This finishes the proof for n = 3. ���

4.3. Relating U̇

(gln) to U̇


(sln)

This subsection, in which we are making a transition from U̇

(gln) to

U̇

(sln), is a preparation for the next section.
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Recall that there is a Schur (S(n, d),HSd
)-duality on V⊗d, where V

is an n-dimensional vector space over Q(v). It is shown [10, 3] (see also

[2]) that there is a Schur-type (S(n, d),HBd
)-duality on V⊗d where HBd

is

the Iwahori-Hecke algebra associated to the hyperoctahedral group Bd. In

particular we have algebra homomorphisms

S(n, d)
∼=−→ EndHSd

(V⊗d), S(n, d)
∼=−→ EndHBd

(V⊗d).

Recall the sign homomorphism

χn : S(n, n) −→ Q(v) (4.7)

from the proof of Proposition 3.3 (cf. [17, 1.8]). We have a natural inclusion

of algebras HBd
×HSn ⊆ HBd+n

. The transfer map

φ
d+n,d : S

(n, d+ n) −→ S(n, d)

is defined as the composition of the homomorphisms

S(n, d+ n)
∼=−→ EndHBd+n

(V⊗(d+n))
∆

−→ EndHBd
×HSn

(V⊗(d+n))

∼=−→ EndHBd
(V⊗d)⊗ EndHSn

(V⊗n)
1⊗χn−→ EndHBd

(V⊗d)
∼=−→ S(n, d).

(4.8)

This transfer map will be studied in depth from a geometric viewpoint in

[8], where the proof of the following lemma can be found.

Lemma 4.3. We have

φ
d+n,d([A]d+n) =

{
[A− 2I]d, if A− 2I ∈ Ξd,

0, otherwise.

for all A ∈ Ξd+n such that one of the following matrices is diagonal: A,

A− aEθ
i+1,i or A− aEθ

i,i+1 for some a ∈ N and 1 ≤ i ≤ (n− 1)/2.

Similar to the decomposition (2.1) for U̇(gln), we can decompose U̇

(gln)

as a direct sum of subalgebras

U̇

(gln) =

⊕

d∈Z

U̇

(gln)〈d〉,
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where U̇

(gln)〈d〉 is spanned by elements of the form 1λu1µ with |µ| = |λ| =

2d+ 1 and u ∈ U̇

(gln). Also similar to the decomposition (3.2) for U̇(sln),

we can decompose U̇

(sln) as a direct sum of n subalgebras

U̇

(sln) =

⊕

d̄∈Z/nZ

U̇

(sln)〈d̄〉,

where U̇

(sln)〈d̄〉 is spanned by 1µU̇


(sln)1λ, where |µ| ≡ |λ| ≡ 2d+1mod 2n.

Denote by πd̄ : U̇

(sln) → U̇


(sln)〈d̄〉 the natural projection. There exists a

natural algebra isomorphism similar to (3.3)

℘d, : U̇

(gln)〈d〉 ∼= U̇


(sln)〈d〉 (∀d ∈ Z), (4.9)

which induces a homomorphism ℘ : U̇

(gln) → U̇


(sln). In the same way

as for U̇(gln) defined in (2.2), for each p ∈ 2Z we define a shift map

ξp : U̇

(gln) −→ U̇


(gln), ξp([A]) = [A+ pI], (4.10)

where either A, A−Eθ
h,h+1 or A−Eθ

h+1,h for some 1 ≤ h ≤ n−1 is diagonal.

It follows by definitions that

℘ ◦ ξp = ℘, for all p ∈ 2Z. (4.11)

Recall a homomorphism Φ
d : U̇


(gln) → S(n, d) was defined in [2, §4.6]

(and denoted by φd therein) which sends [A] to [A]d for A ∈ Ξd and to zero

otherwise. We define

φ
d : U̇


(sln) −→ S(n, d)

to be the composition

U̇

(sln)

πd̄−→ U̇

(sln)〈d̄〉

℘−1
d,−→ U̇


(gln)〈d〉

Φ
d−→ S(n, d). (4.12)

We introduce another homomorphism

Ψ
d : U̇


(gln) −→ S(n, d)
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to be the composition of the following homomorphisms

U̇

(gln)

℘−→ U̇

(sln)

φ
d−→ S(n, d).

Note that Ψ
d 6= Φ

d, but Ψ

d coincides with Φ

d when restricted to U̇

(gln)〈d〉.

Proposition 4.4. We have the following commutative diagram:

(4.13)

Proof. The commutativity of the left upper triangle and the right upper

triangle is clear from definition. The commutativity of the bottom triangle

follows from a description of the homomorphisms φ
d and φ

d+n,d in terms of

matching the generators by Lemma 4.3. ���

5. Canonical Basis for Modified Quantum Coideal Algebra U̇

(sln),

for n Odd

In this section we continue (as in Section 4) to let n = 2r + 1 and

D = 2d+ 1 be odd positive integers.

We establish some asymptotical behavior for the canonical bases of

Schur algebras under the transfer map. This is used to define the canonical

basis for U̇

(sln) and to show that structure constants of the canonical basis

of U̇

(sln) are positive. We further show that the transfer map on the Schur

algebras sends every canonical basis element to a positive sum of canonical

basis elements or zero, and provide some corollaries.

5.1. Asymptotic identification of canonical bases for S(n, d)

Recall a bilinear form 〈·, ·〉d on S(n, d) is defined in [2, §3.7] (and de-

noted by (·, ·)D therein with D = 2d + 1). The same argument as for [18,
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Proposition 4.3] shows that

〈x, y〉 := lim
p→∞

n−1∑

d=0

〈
φ
d+pn(x), φ


d+pn(y)

〉
d+pn

, for x, y ∈ U̇

(sln), (5.1)

exists as an element in Q(v). Thus we have constructed a bilinear form

〈−,−〉 on U̇

(sln).

Recall there is a partial order � on Ξ̃ [2, (3.22)] by declaring A � B if

and only if
∑

r≤i;s≥j ars ≤ ∑
r≤i;s≥j brs for all i < j. For an n × n matrix

A = (aij), let

ro(A)=
(∑

j

a1j ,
∑

j

a2j , . . . ,
∑

j

anj

)
, co(A)=

(∑

i

ai1,
∑

i

ai2, . . . ,
∑

i

ain

)
.

There is a partial order ⊑ on Ξ̃ [2, (3.24)], which refines �, so that A′ ⊑ A

if and only if A′ � A, ro(A′) = ro(A) and co(A′) = co(A). The following

lemma is preparatory.

Lemma 5.1. Fix A = (aij) ∈ Ξ̃. Suppose that p is an even integer such

that all + p ≥ ∑
i 6=j aij for all 1 ≤ l ≤ n. If B ∈ Ξ̃ satisfies B ⊑ pA, then

B ∈ Ξ|pA|, i.e., bii ≥ 0 for all 1 ≤ i ≤ n.

Proof. We prove by contradiction. Suppose that bi0,i0 < 0 for some i0. We

have
∑

j 6=i0

bi0j > ro(B)i0 = ro(pA)i0 ≥ ai0i0 + p ≥
∑

i 6=j

aij .

This implies that

∑

r≤i0,s≥i0+1

brs +
∑

r≥i0,s≤i0−1

brs ≥
∑

j 6=i0

bi0j

>
∑

i 6=j

aij ≥
∑

r≤i0,s≥i0+1

ars +
∑

r≥i0,s≤i0−1

ars,

which contradicts with the condition B ⊑ pA. ���

Proposition 5.2. Given A ∈ Ξ̃ with |A| = 2d0 + 1, we have, for even

integers p ≫ 0,

φ
d,d−n({pA}d) = {(p−2)A}d−n,
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where we denote d = d0 + pn/2 so that |pA| = 2d+ 1.

Proof. The proof is essentially adapted from that of [18, Proposition 7.8]

with minor modifications. Let us go over it for the sake of completeness.

Recall the monomial basis {dMA|A ∈ Ξd} of S(n, d) from [2, (3.25)],

(which is denoted by mA therein). By Lemma 4.3 we have

φ
d,d−n( dMA) = d−nMA−2I , ∀d.

(It is understood that d−nMA−2I = 0 if A − 2I 6∈ Ξd−n.) The proposition is

equivalent to the following.

Claim (⋆). Let A ∈ Ξ̃. For all even integer p ≫ 0, we have

{pA}d = dMpA +
∑

A′≺A

cA′,A,p dMpA′ ,

where cA′,A,p ∈ A is independent of p ≫ 0.

Recall [2] that the basis {dMpA} satisfies dMpA = dMpA, dMpA ∈ AS
(n, d),

and

dMpA = {pA}d +
∑

B≺A

w
pA, pB{pB}d, for some w

pA,pB ∈ A. (5.2)

We shall argue similarly as for a claim in the proof of [18, Proposition

7.8], with DbA used in loc. cit. replaced by dMpA; that is, we shall prove

Claim (⋆) by induction on A with respect to the partial order �. When

A is minimal, it follows by (5.2) that dMpA = {pA}d for all p, and hence

Claim (⋆) holds.

Now assume that Claim (⋆) holds for all B such that B ≺ A. Set

Id =
{
B ∈ Ξ̃

∣∣B � A, pB ∈ Ξd, ro(B) = ro(A), co(B) = co(A)
}
.

Then for p ≫ 0, we have by Lemma 5.1 that

• Id = {B ∈ Ξ̃|B � A, ro(B) = ro(A), co(B) = co(A)};

• Id is a finite set, and it is independent of p ≫ 0 (recall d = d0 + pn/2

depends on p).
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For u ∈ A = Z[v, v−1], let deg(u) be its degree. For x ∈ SpanA{{pB}d|B ∈
Id}, we set

n(x) = max
{
deg 〈x, {pB}d〉d

∣∣B ∈ Id, B 6= A
}
, and np = n(dMpA).

Suppose that np ≥ 0. We set

Jd =
{
B ∈ Id

∣∣ deg 〈 dMpA, {pB}d〉d = np

}
.

Then we can write, for each B ∈ Id,
〈
d
M
pA, {pB}d

〉
d
=

∑

i≤np

cB,p,iv
i ∈ Z[v, v−1],

where cB,p,i ∈ Z (∀i), and cB,p,np

{
6= 0, if B ∈ Jd,

= 0, if B ∈ Id\Jd.

(5.3)

We define a new bar-invariant element in AS
(n, d):

dM
′
pA =

{
dMpA −∑

B∈Jd
cB,p,np(v

np + v−np){pB}d, if np > 0,

dMpA −∑
B∈Jd

cB,p,np{pB}d, if np = 0.

We now show that n(dM
′
pA

) < np = n(dMpA). We give the details for np > 0,

while the case for np = 0 is entirely similar. By the almost orthonormality

of the canonical basis of S(n, d) [2], we have
〈
{pB}d, {pB′}d

〉
d
∈ δB,B′ +

v−1Z[v−1]. For B ∈ Id, we have by (5.3) that

〈
d
M
′
pA, {pB}d

〉
d

=
〈
d
M
pA, {pB}d

〉
d
−

∑

B′∈Jd

cB′,p,np
(vnp + v−np)

〈
{pB}d, {pB′}d

〉
d

≡
∑

i≤np−1

cB,p,iv
i −

∑

B 6=B′∈Jd

cB′,p,np
vnp

〈
{pB}d, {pB′}d

〉
d

mod v−1Z[v−1],

which implies that n(dM
′
pA

) < np.

By repeating the above procedure with dM
′
pA

in place of dMpA, we produce

a bar-invariant element dM
′′
pA

in AS
(n, d) with degree n(dM

′′
pA

) < n(dM
′
pA

),

and then repeat again and so on. So under the assumption that np ≥ 0, after

finitely many steps we obtain a bar-invariant element in AS
(n, d), denoted

by b
pA, with n(b

pA) < 0.
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On the other hand, if np = n(dMpA) < 0, then we simply set bpA = dMpA.

We now show that bpA = {pA}d. By the above construction and (5.2),

we have

b
pA = {pA}d +

∑

B∈Id

fB{pB}d,

for some fB ∈ A and fB = fB. If fB 6= 0 for some B, then n(bpA) ≥ 0,

which is a contradiction. Hence we have bpA = {pA}d.

In the finite process above of constructing {pA}d (in the form of bpA)

from the monomial basis, we only need the first np coefficients of 〈dMpA,

{pB}d〉d as well as of 〈{pB′}d, {pB}d〉d for B ∈ Id, B′ ∈ Jd. Recall that the

monomial basis {MA|A ∈ Ξ̃} ofK from [2, 4.8] satisfies that φd(MA) = dMpA

if pA ∈ Ξd. So by the inductive assumption that any element B ≺ A satisfies

Claim (⋆) and the convergence of the bilinear form 〈·, ·〉d (with d = d0+pn/2)

in Q((v−1)) as p 7→ ∞, we conclude that Id, np and cB,p,i (0 ≤ i ≤ np) are all

independent of p ≫ 0. Now Claim (⋆) follows by the construction of {pA}d
as bpA in terms of the monomial basis above. ���

Proposition 5.3. Given A ∈ Ξ̃, we have

ξ−2({pA}) = {(p−2)A}, ℘({pA}) = ℘({(p−2)A})

for all even integers p ≫ 0, where ξ−2 is defined in (4.10).

Proof. Denote |A| = 2d0 + 1, and d = d0 + pn/2. We have the following

commutative diagram

U̇

(gln)

ξ−2−−−−→ U̇

(gln)

Φ
d

y Φ
d−n

y

S(n, d)
φ
d,d−n−−−−→ S(n, d− n)

(5.4)

i.e., Φ
d−n ◦ ξ−2 = φ

d,d−n ◦Φ
d. By [2, Appendix A, Theorem A.21], we have

Φ
d({pA}) = {pA}d, Φ

d−n({(p−2)A}) = {(p−2)A}d−n, ∀p ≫ 0. (5.5)
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Moreover, by [2, (4.8)], we have

ξ−2({pA}) = {(p−2)A}+
∑

B∈Ξd−n

fB{B}, (for fB ∈ A), (5.6)

where the summation can be taken over B ∈ Ξd−n is ensured by Lemma 5.1.

Using Proposition 5.2, (5.5), (5.4), and (5.6) one by one, we conclude

that

{(p−2)A}d−n = φ
d,d−n ◦Φ

d({pA})

= Φ
d−n ◦ ξ−2({pA}) = {(p−2)A}d−n +

∑

B∈Ξd−n

B⊏ (p−2)A

fB{B}d−n.

Hence all fB must be zero, and the first identity in the proposition

follows from (5.6). The second identity is immediate from the first one

and (4.11). ���

5.2. Canonical basis for U̇

(sln)

By Proposition 5.3, for Â ∈ Ξ̂ (recall Ξ̂ from (4.4)), the element

b
Â
:= ℘({pA}), for p ≫ 0

is independent of p and thus a well-defined element in U̇

(sln). It follows

by definition that ℘ : U̇

(gln) → U̇


(sln) preserves the A-forms, so we have

bÂ ∈ AU̇

(sln).

Proposition 5.4. For A ∈ Ξ̃ with |A| = 2d0 + 1, let d = d0 + pn/2. Then

φ
d(bÂ) = {pA}d for even integers p ≫ 0.

Proof. We have, for p ≫ 0,

φ
d(bÂ) = φ

d(℘({pA})) = Ψ
d({pA}) = Φ

d({pA}) = {pA}d,

where the first equality follows by definition, the second one is due to (4.13),

the third one follows by definition (4.12), and the last one follows from [2,

Theorem 6.10]. The proposition is proved. ���

Theorem 5.5. The set Ḃ(sln) = {bÂ|Â ∈ Ξ̂} forms a basis of U̇

(sln), and

it also forms an A-basis for AU̇

(sln).
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Proof. Observe that ξp({A}) = {A + pI} + lower terms. Hence it follows

by the surjectivity of ℘ that Ḃ(sln) is a spanning set for the A-module

AU̇

(sln). To show that Ḃ(sln) is linearly independent, it suffices to check

that Ḃ(sln)∩ U̇

(sln)〈d̄〉 is linearly independent for each d̄ ∈ Z/nZ. This is

then reduced to the Schur algebra level by Proposition 5.4, which is clear.

Hence Ḃ(sln) = {b
Â
|Â ∈ Ξ̂} is an A-basis of AU̇


(sln), and thus it is also a

basis of U̇

(sln). ���

5.3. Positivity of the canonical basis Ḃ(sln)

The basis Ḃ(sln) is called the canonical basis (or -canonical basis) of

U̇

(sln), as we shall show that the canonical basis Ḃ(sln) admits several

remarkable properties such as positivity and almost orthonormality just like

Lusztig’s canonical basis for U̇(sln) (see Proposition 3.1 and [15]).

Given Â, B̂ ∈ Ξ̂, we write

b
Â
∗ b

B̂
=

∑

Ĉ∈Ξ̂

P Ĉ
Â,B̂

b
Ĉ
,

where P Ĉ
Â,B̂

∈ Z[v, v−1] is zero for all but finitely many Ĉ.

Theorem 5.6 (Positivity). We have P Ĉ
Â,B̂

∈ N[v, v−1], for any Â, B̂, Ĉ ∈ Ξ̂.

Proof. Let us write bÂ ∗ bB̂ =
∑

Ĉ∈Ω P Ĉ
Â,B̂

bĈ , where Ω is the finite set

which consists of Ĉ ∈ Ξ̂ such that P Ĉ
Â,B̂

6= 0. Let us pick representatives

A,B,C ∈ Ξ̃ such that |A| = |B| = |C| = 2d0 + 1 for all Ĉ ∈ Ω.

By Proposition 5.4, we can find some large p (and recall d = d0 + pn/2)

such that pA, pB, pC ∈ Ξ and

φ
d(bÂ) = {pA}d, φ

d(bB̂) = {pB}d, φ
d(bĈ) = {pC}d,

for all C with Ĉ ∈ Ω. So we have the following multiplication of canonical

basis in S(n, d):

{pA}d ∗ {pB}d =
∑

Ĉ∈Ω

P Ĉ
Â,B̂

{pC}d.
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Thanks to the intersection cohomology construction of the canonical basis

for S(n, d) [2], the structure constants P Ĉ
Â,B̂

lie in N[v, v−1]. This proves the

theorem. ���

Proposition 5.7. The bilinear form 〈·, ·〉 on U̇

(sln) is non-degenerate.

Moreover, the almost orthonormality for the canonical basis holds: 〈b
Â
, b

B̂
〉

∈ δÂ,B̂ + v−1Z[[v−1]].

Proof. This almost orthonormality follows by an argument entirely

similar to [18, Theorem 8.1], and it implies the non-degeneracy of the

bilinear form. ���

We have the following positivity for the canonical bases with respect to

the bilinear form.

Theorem 5.8. We have 〈bÂ, bB̂〉 = δÂ,B̂ + v−1N[[v−1]], for any Â, B̂ ∈ Ξ̂.

Proof. The proof follows very closely McGerty’s geometric argument [18,

Proposition 6.5, Theorem 8.1], with [18, Corollary 3.3] replaced by [2, Corol-

lary 3.15]. We only sketch the proof with an emphasis on the difference and

refer to loc. cit. for further details.

By the definition of 〈·, ·〉, it is reduced to show that 〈{A}d, {B}d〉d ∈
δA,B + v−1N[v−1] for all A,B ∈ Ξd where 〈·, ·〉d is the bilinear form on

S(n, d). The positivity of the form 〈·, ·〉d in the theorem will follow by

its identification with another geometrically defined bilinear form 〈·, ·〉g,d on

S(n, d) which manifests the positivity. The latter is defined exactly the

same as [18, (6-1)] with the flag variety Fa therein replaced by the n-step

isotropic flag variety of a (2d+1)-dimensional complex vector space equipped

with a non-degenerate symmetric bilinear form.

Now arguing similar to [18, Lemma 6.3], we have, for all A minimal

with respect to the partial order ≤,

〈{A}d ∗ {B}d, {C}d〉g,d = vdA−dAt 〈{B}d, {At}d ∗ {C}d〉g,d,

where At is the transpose of A. This implies the analog of [18, Lemma

6.4], which gives the formulas for the adjoints of the Chevalley generators of

S(n, d) for the bilinear form 〈·, ·〉g,d, and we observe that they coincide with
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the ones for 〈·, ·〉d given in [2, Corollary 3.15]. Hence, the identification of

the forms 〈·, ·〉d and 〈·, ·〉g,d is reduced to show that

〈{A}d, {Dλ}d〉d = 〈{A}d, {Dλ}d〉g,d, ∀A,λ

where Dλ is the diagonal matrix with diagonal λ. Indeed, if we write {A}d =∑
A′≤A PA,A′ [A′]d for some PA,A′ ∈ Z[v−1], then both sides of the above

equation are equal to PA,Dλ
if ro(A) = co(A) = λ, or zero otherwise. The

theorem follows. ���

Furthermore, we have the following characterization of the signed canon-

ical basis.

Proposition 5.9. The signed canonical basis −Ḃ(sln)∪ Ḃ(sln) is charac-

terized by the following three properties: (i) b = b, (ii) b ∈ AU̇

(sln), and

(iii) 〈b, b′〉 ∈ δb,b′ + v−1Z[[v−1]].

Proof. It follows by definition and Proposition 5.7 that −Ḃ(sln) ∪ Ḃ(sln)

satisfies the three properties above. The characterization claim is then

proved in the same way as [15, 14.2.3] for the usual canonical bases. ���

5.4. Positivity of transfer map φ
d+n,d

We have the following positivity on the transfer map φ
d+n,d, generalizing

Proposition 3.3 on the positivity of the transfer map φd+n,d.

Theorem 5.10. The transfer map φ
d+n,d : S(n, d + n) → S(n, d) sends

each canonical basis element to a sum of canonical basis elements with (bar

invariant) coefficients in N[v, v−1].

Proof. The strategy of the proof is identical to the one for Proposition

3.3, which is reduced to the positivity of ∆ defined in (4.8) with respect

to the canonical bases and the positivity of χ which was already established

in (3.8). The proof of the positivity of ∆ is similar to that of ∆ in the

proof of Proposition 3.3 (the details are provided in [8] together with other

applications in a geometric setting). ���

Proposition 5.11. The map φ
d : U̇


(sln) → S(n, d) sends each canoni-

cal basis element to a sum of canonical basis elements with (bar invariant)

coefficients in N[v, v−1].



✐

“BN13N21” — 2018/1/30 — 14:56 — page 177 — #35
✐

✐

✐

✐

✐

2018] POSITIVITY VS NEGATIVITY OF CANONICAL BASES 177

Proof. This follows by applying (4.13), Proposition 5.4 and Theorem 5.10.

The detail is completely analogous to the proof of Proposition 3.4 and hence

skipped. ���

Remark 5.12. Theorem 5.10 provides a strong evidence for a possible func-

tor realization of the transfer map φ
d+n,d (cf. [18, Remark 7.10]). In light of

[16, 20], it is interesting to see if φ
d+n,d (and hence φ

d) sends each canonical

basis element to a canonical basis element or zero, improving Theorem 5.10

and Proposition 5.11; compare with Remark 3.5.

Recall there is a Schur-type (S(n, d),HBd
)-duality on V⊗d [10, 3], where

V is n-dimensional, and this duality can be completely realized geometrically

[2]. Denote by B(nd) the -canonical basis of V⊗d constructed in [3]. These

canonical bases on V⊗d as well as on S(n, d) are realized in [2] as simple

perverse sheaves, and the action of S(n, d) on V⊗d is realized in terms of a

convolution product. Hence we have the following positivity.

Proposition 5.13. The action of S(n, d) on V⊗d with respect to the corre-

sponding -canonical bases is positive in the following sense: for any canon-

ical basis element a of S(n, d) and any b ∈ B(nd), we have

a ∗ b =
∑

b′∈B(nd)

Db′

a,b b
′, where Db′

a,b ∈ N[v, v−1].

We obtain a natural action of U̇

(sln) on V⊗d by composing the action

of S(n, d) on V⊗d with the map φ
d : U̇


(sln) → S(n, d). As a corollary

of Propositions 5.11 and 5.13 we have the following positivity (which is a

special case of a conjectural positivity property of the canonical basis for

general tensor product modules [3]).

Corollary 5.14. The action of U̇

(sln) on V⊗d with respect to the corre-

sponding -canonical bases is positive.

5.5. Compatibility of canonical bases Ḃ(slm) and Ḃ(sln)

Given integers k,m with 0 ≤ 2m ≤ n, we recall τkm,n from (4.3). Fix

an m-tuple of integers k = (k0, k1, . . . , km−1). We define an imbedding

τkdm,n : U̇(slm)〈d〉 → U̇

(sln)〈d+ kd(n− 2m)〉, for 0 ≤ d < m, to be the

composition
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U̇(slm)〈d〉 ℘−1
d−→ U̇ (glm)〈d〉 τ

kd
m,n−→ U̇


(gln)〈d+ kd(n− 2m)〉

℘−→ U̇

(sln)〈d+ kd(n− 2m)〉. (5.7)

These τkdm,n for all d can be combined into a homomorphism τkm,n : U̇ (slm) →
U̇


(sln). We recall Θ

m
from (3.1), which is understood in this subsection to

consist of m×m matrices.

Proposition 5.15. Retaining the notations above, we have τkm,n

(
Ḃ(slm)

)
⊆

Ḃ(sln). More precisely, if bA ∈ Ḃ(slm) for A ∈ Θ
m
, then τkm,n(bA) = b

Â′ ,

where A′ = τkdm,n(A) if |A| = d.

Proof. We have the following commutative diagram:

U̇(glm)〈d〉 τ
kd
m,n−−−−→ U̇


(gln)〈d+ kd(n− 2m)〉

ξ2l

y ξ2l

y

U̇(glm)〈d+ 2lm〉 τ
kd+l
m,n−−−−→ U̇


(gln)〈d+ kd(n − 2m) + ln〉

Let A ∈ Θ
m
. Pick the preimage (an m×m matrix) A of A with 0 ≤ |A| < m,

and set d = |A|. Recall from (3.4) and (4.11) that ℘◦ξ2l = ℘ and ℘◦ξ2l = ℘,

for l ∈ Z. It follows from these identities, (5.7), and the above commutative

diagram that τkdm,n = ℘ ◦ τkd+l
m,n ◦ ℘−1

d+2lm. Hence applying [18, Proposition

7.8], Lemma 4.1, and Proposition 5.3 in a row give us (for l ≫ 0)

τkdm,n(bA) = ℘ ◦ τkd+l
m,n ◦ ℘−1

d+2lm(bA) = ℘ ◦ τkd+l
m,n ( a{2lA})

= ℘({τkd+l
m,n (2lA)}) = b

Â′ ,

where the last identity uses the fact that A′ = τkdm,n(A) and τkd+l
m,n (2lA) have

the same image in Ξ̂. The proposition is proved. ���

5.6. A positive basis for U̇

(gln)

Recall that the stably canonical basis of U̇

(gln) (and hence of U̇


(gln)〈d〉

for d ∈ Z) does not have positive structure constants in general by Propo-

sition 4.2. However, one can transport the canonical basis on U̇

(sln)〈d〉

to U̇

(gln)〈d〉 via the isomorphism ℘d, in (4.9), which has positive struc-

ture constants by Theorem 5.6. Let us denote the resulting positive basis
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(or canonical basis) on U̇

(gln) = ⊕d∈ZU̇


(gln)〈d〉 by B

pos(gln). By defini-

tion, the basis B
pos(gln) is invariant under the shift maps ξp for p ∈ 2Z.

Summarizing we have the following.

Proposition 5.16. There exists a positive basis B
pos(gln) for AU̇


(gln) (and

also for U̇

(gln)), which is induced from the canonical basis for AU̇


(sln).

It is clear that the transition matrix between the positive basis and the

stably canonical basis of AU̇

(gln) is unitriangular.

6. Canonical Basis for U̇
ı
(sln) for n Even

In this section, we shall construct the canonical basis of U̇
ı
(sln) for n

even with positivity properties. This is achieved by relating to the case of

U̇

(sln) for n odd studied in the previous two sections with

n = n− 1 ≥ 2 (n even).

6.1. ıSchur algebra Sı(n, d) and the transfer map φı
d+n,d

Recall AS
(n, d) from Section 4.1. We define AS

ı(n, d) to be the A-

submodule of AS
(n, d) spanned by the standard basis element [A]d, where

A runs over the following subset of Ξd in (4.1).

Ξı
d = {A ∈ Ξd|a n

2
+1,j = δ n

2
+1,j, ai, n

2
+1 = δi, n

2
+1}. (6.1)

Clearly, this is a subalgebra of AS
(n, d) over A. Note that when the pa-

rameter v is specialized at
√
q, the algebra AS

ı(n, d) coincides with the con-

volution algebra of pairs of n-step partial isotropic flag in F2d+1
q equipped

with a fixed non-degenerate symmetric bilinear form. Moreover, the subset

{{A}d|A ∈ Ξı
d} of the canonical basis of AS

(n, d) is an A-basis of AS
ı(n, d).

Let

Sı(n, d) = Q(v)⊗A AS
ı(n, d).

Recall from (4.8), we have an algebra homomorphism S(n+d, d) → S(n, d)

⊗S(n, n). By restricting to Sı(n, d), we obtain an algebra homomorphism

∆ı : Sı(n, n+ d) → Sı(n, d)⊗ S(n, n),
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where we identify S(n, n) with the subalgebra in S(n, n) spanned by the

elements [A] whose entries in the (n2 + 1)st rows and columns are zero. We

refer to [8, Lemma 5.1.1] for a more explicit construction of ∆ı, which is

denoted ∆̃ı therein. Recall the sign homomorphism χn from (4.7), and we

define the transfer map φı
d+n,d : S

ı(n, d+n) → Sı(n, d) to be the composition

φı
d+n,d : S

ı(n, d + n)
∆ı

−−−−→ Sı(n, d) ⊗ S(n, n)
1⊗χn−−−−→ Sı(n, d).

We set

I = I − En+1,n+1.

By [8, Corollary 5.1.4], we have

φı
d+n,d({X}d+n) =

{
{X − 2I}d, if X − 2I ∈ Ξı

d,

0, otherwise.
(6.2)

for all matrices X ∈ Ξı
d such that either one of the following matrices is

diagonal: X, X −Eθ
n

2
, n
2
+2, X − aEθ

i+1,i or X − aEθ
i,i+1 where a ∈ N, 1 ≤ i ≤

n
2 − 1.

Remark 6.1. As we will show that if X is chosen such that X − aEθ
n

2
, n
2
+2

is diagonal for a ≥ 2, the formula (6.2) fails to be true. This makes the

construction of canonical basis for U̇
ı
(sln) more subtle than that of U̇


(sln).

This subtlety boils down to the detailed analysis of the rank-one transfer

map, which is the main topic of the following subsection.

6.2. The transfer map on Sı(2, d)

In this subsection, we set n = 2 (hence r = 1) and consider the rank-one

transfer map φı
d,d−2 : S

ı(2, d) −→ Sı(2, d − 2). For convenience, we set

Aa,b =




a 0 b

0 1 0

b 0 a


 . (6.3)

Thus if Aa,b ∈ Ξd, we have a + b = d. In this subsection we drop the index

d to write [Aa,b] and {Aa,b} for [Aa,b]d and {Aa,b}d, respectively. We set

[Aa,b] = 0, if a < 0 or b < 0.
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Lemma 6.2. For all a, b ∈ N such that a+ b = d, we have

φı
d,d−2([Aa,b]) = [Aa−2,b] + (v−a+1 − v−a−1)[Aa−1,b−1]− v−2a−1[Aa,b−2].

Proof. We shall prove the lemma by induction on b. When b = 0, the

statement follows from the definition of φı
d,d−2.

Let b ∈ N, and we assume the formula in the lemma is proved for

φı
d,d−2([Aa,b′ ]), for all b

′ ≤ b and all a. We set td = {Ad−1,1}. Recall from [2,

Lemma A.13] that we have

td ∗ [Aa,b] = v−a+b[Aa,b] + vb[b+ 1][Aa−1,b+1] + vb−1[a+ 1][Aa+1,b−1]. (6.4)

By induction and using (6.4), we have

φı
d,d−2(td ∗ [Aa,b])

= φı
d,d−2(v

−a+b[Aa,b] + vb[b+ 1][Aa−1,b+1] + vb−1[a+ 1][Aa+1,b−1])

= (v−a+b+2 + vb−1[b](v−a+1 − v−a−1))[Aa−2,b] + vb[b+ 1][Aa−3,b+1]

+
(
vb−1[a− 1] + (v−a+1 − v−a−1)v−a+b − v−2a+b−3[b− 1]

)
[Aa−1,b−1]

+
(
vb−2[a](v−a+1−v−a−1)−v−3a+b−3

)
[Aa,b−2]−v−2a+b−4[a+1][Aa+1,b−3].

(6.5)

By combining (6.4) and (6.5), we have

vb[b+ 1]φı
d,d−2([Aa−1,b+1])

= φı
d,d−2(td ∗ [Aa,b])− v−a+bφı

d,d−2([Aa,b])− vb−1[a+ 1]φı
d,d−2([Aa+1,b−1])

= vb[b+ 1][Aa−3,b+1]+
(
v−a+b+2−v−a+b+vb−1[b](v−a+1−v−a−1)

)
[Aa−2,b]

+
(
vb−1[a− 1]− v−2ab−3[b− 1]− vb−1[a+ 1]

)
[Aa−1,b−1]

+
(
vb−2[a](v−a+1 − v−a−1)− v−3a+b−3 + v−3a+b−1

− vb−1[a+ 1](v−a − v−a−2)
)
[Aa,b−2]

= vb[b+ 1]
(
[Aa−3,b+1] + (v−a+2 − v−a)[Aa−2,b]− v−2a+1[Aa−1,b−1]

)
.

Thus we have

φı
d,d−2([Aa−1,b+1])

= [Aa−3,b+1] + (v−(a−1)+1 − v−(a−1)−1)[Aa−2,b]− v−2(a−1)−1[Aa−1,b−1].
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The lemma is proved. ���

Proposition 6.3. We have

φı
d,d−2({Aa,b}) =





{Aa−2,b}, if a ≥ 2,

{A0,b−1}, if a = 1,

0, if a = 0.

(6.6)

Proof. The coefficients of [Aa−1,b−1] and [Aa,b−2] in the expansion

of φı
d,d−2([Aa,b]) are in v−1Z[v−1] for a ≥ 2, by Lemma 6.2. Meanwhile,

Aa′,b′ � Aa,b if and only if a′ ≥ a. So we have

φı
d,d−2({Aa,b}) ∈ [Aa−2,b] +

b∑

i=1

v−1Z[v−1][Aa−2+i,b−i]. (6.7)

Since φı
d,d−2({Aa,b}) is bar invariant, we conclude that φı

d,d−2({Aa,b}) =

{Aa−2,b} if a ≥ 2.

For a = 1, we write

{A1,b} = [A1,b] +

b∑

i=1

Qi[A1+i,b−i], for some Qi ∈ v−1Z[v−1].

Thus

φı
d,d−2({A1,b}) = (1− v−2)[A0,b−1]− v−3[A1,b−2] +

b∑

i=1

Qiφ
ı
d,d−2([A1+i,b−i]).

(6.8)

By Lemma 6.2, the coefficient of [A0,b−1] on the RHS of (6.8) is in 1 +

v−1Z[v−1] and the coefficients of [A1+i,b−i] on the RHS of (6.8) for i ≥ 0

are in v−1Z[v−1]. Now since φı
d,d−2({Aa,b}) is bar invariant, the coefficient

of [A0,b−1] must be 1, and we have φı
d,d−2({A1,b}) = {A0,b−1}.

Now Lemma 6.2 for a = 0 gives us φı
d,d−2([A0,b]) = −v−1[A0,b−2]. A

similar analysis as for a = 1 shows that the expansion of φı
d,d−2({A0,b}) with

respect to the standard basis [Aa,b] have all coefficients in v−1Z[v−1]. This

yields φı
d,d−2({A0,b}) = 0 due to its bar-invariance property.

The proposition is proved. ���

In Section 7.3, we will give an explicit formula of the canonical basis in

Sı(2, d) in terms of standard basis.
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6.3. Hybrid monomial basis for Sı(n, d)

Now we consider Sı(n, d) for a general even integer n. Recall the mono-

mial basis {dMA|A ∈ Ξı
d} of Sı(n, d) from [2, Proposition 5.6]; for notation

Ξı
d see (6.1). This is a subset of the monomial basis {dMA} in S(n, d) [2,

(3.25)] (denoted by mA therein) used in Section 5.1, and dMA is a monomial

in [X]d where either X − aEθ
i,i+1, or X − aEθ

i+1,i, for all 1 ≤ i ≤ n
2 − 1, is

diagonal or a twin product [X1]d ∗ [Y1]d, where the matrices X1 − aEθ
n

2
, n
2
+1

and Y1 − aEθ
n

2
+1, n

2
for some a ∈ N are diagonal and co(X1) = ro(Y1). Recall

that the subset {{A}d|A ∈ Ξı
d} of the canonical basis of S(n, d) forms a

basis for Sı(n, d) and for the twin pair [X1]d ∗ [Y1]d, we have

[X1]d ∗ [Y1]d = {Eθ
n

2
, n
2
+2(a)}d + lower terms ∈ Sı(n, d). (6.9)

Here Eθ
n

2
, n
2
+2(a) is the unique matrix defined by the conditions: co

(
Eθ

n

2
, n
2
+2(a)

)

= co(Y1) and Eθ
n

2
, n
2
+2(a)− aEθ

n

2
, n
2
+2 is diagonal.

Definition 6.4. The hybrid monomial dM
ı
A is obtained from dMA by replacing

the twin product [X1]d ∗ [Y1]d in dMA by the leading term {Eθ
n

2
, n
2
+2(a)}d in

(6.9).

The following properties of the hybrid monomials dM
ı
A are the main

reasons to introduce them.

Proposition 6.5. The following properties hold for a hybrid monomial dM
ı
A

(where A ∈ Ξı
d):

(1) dM
ı
A = dM

ı
A,

(2) dM
ı
A = {A}d+ lower term,

(3) the set {dM ı
A

∣∣A ∈ Ξı
d} forms a basis of AS

ı(n, d),

(4) φı
d,d−n(dM

ı
A) = d−nM

ı
A, whenever aii ≫ 0 for all i ∈ [1, n2 ].

Proof. Items (1)−(3) follow readily by construction. Since dM
ı
A is obtained

by modifying the factors in dMA at finitely many places, it is clear that we

can add pI for p large enough to A such that all twin product [X1]d ∗ [Y1]d
appearing in dMA+pI have their (n2 ,

n
2)th entries ≥ 2. Item (4) now follows

from the analysis of the rank one transfer map in Section 6.2. ���
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6.4. The modified quantum coideal subalgebras U̇
ı
(gln) and U̇

ı
(sln)

Recall the algebraK from Section 4.1. This algebra has a standard basis

[A] parameterized by the set Ξ̃ in (4.2). Let K
1 be the subalgebra of K

spanned by the standard basis [A] in Ξ̃ such that ro(A) n

2
+1 = co(A) n

2
+1 =

1. Let J1 be the ideal of K
1 spanned by [A] for all A ∈ Ξ̃ı such that

a n

2
+1, n

2
+1 < 0. Let Ξ̃ı be the subset of Ξ̃ consisting of matrices A defined by

a n

2
+1,j = δ n

2
+1,j and ai, n

2
+1 = δi, n

2
+1 for all i, j.

We set Kı be the quotient of K
1 by J1. It is shown in [2, Appendix A.3]

that Kı admits a monomial basis MA + J1, a standard basis [A] + J1, and

a canonical basis {A} + J1, for all A ∈ Ξ̃ı. Furthermore, it is shown in

[2, Proposition A.11] that Kı is isomorphic to the modified quantum coideal

subalgebra U̇
ı
(gln) of the quantum algebraU(gln). We shall identifyKı with

U̇
ı
(gln). Recall that the algebra U̇

ı
(gln) is an associative Q(v)-algebra gener-

ated by the symbols 1λ, ei1λ, 1λei, fi1λ, 1λfi, t1λ, and 1λt, for i = 1, . . . , n2−1

and λ ∈ Zı
n := {λ ∈ Z


n|λ n

2
+1 = 1}, subject to the following relations (6.10):

for i, j = 1, . . . , n2 − 1, λ, λ′ ∈ Zı
n, and for x, x′ ∈ {1, ei, ej , fi, fj , t},





x1λ1λ′x′ = δλ,λ′x1λx
′,

ei1λ = 1λ−αi
ei,

fi1λ = 1λ+αi
fi,

t1λ = 1λt,

ei1λfj = fj1λ−αi−αj
ei, if i 6= j,

ei1λfi = fi1λ−2αi
ei + [λi+1 − λi]1λ−αi

,

(e2i ej + eje
2
i )1λ = [2]eiejei1λ, if |i− j| = 1,

(f2
i fj + fjf

2
i )1λ = [2]fifjfi1λ, if |i− j| = 1,

eiej1λ = ejei1λ, if |i− j| > 1,

fifj1λ = fjfi1λ, if |i− j| > 1,

tfi1λ = fit1λ, if i 6= n
2 − 1,

(t2f n

2
−1 + f n

2
−1t

2)1λ =
(
[2]tf n

2
−1t+ f n

2
−1

)
1λ,

(f2
n

2
−1t+ tf2

n

2
−1)1λ = [2]f n

2
−1tf n

2
−11λ,

tei1λ = eit1λ, if i 6= n
2 − 1,

(t2e n

2
−1 + e n

2
−1t

2)1λ =
(
[2]te n

2
−1t+ e n

2
−1

)
1λ,

(e2n
2
−1t+ te2n

2
−1)1λ = [2]e n

2
−1te n

2
−11λ.

(6.10)

Here λ ± αi are the short hand notations introduced in Section 4.1. To

simplify the notation, we shall write x11λ1 · x21λ2 · · · xl1λl = x1x2 · · · xl1λl ,
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if the product is not zero.

We define an equivalence relation ≈ on Zı
n by setting λ ≈ λ′ if and only

if λ − λ′ = aI for some a ∈ 2Z. Let Ẑı
n be the set Zı

n/ ≈ of equivalence

classes. Let U̇
ı
(sln) be the algebra defined in the same fashion as U̇

ı
(gln)

with the parameter set Zı
n replaced by Ẑı

n. Similar to U̇

(gln), the algebras

U̇
ı
(gln) and U̇

ı
(sln) admit the following decompositions.

U̇
ı
(gln) =

⊕

d∈Z

U̇
ı
(gln)〈d〉,

U̇
ı
(sln) =

⊕

d̄∈Z/nZ

U̇
ı
(sln)〈d̄〉,

where U̇
ı
(gln)〈d〉 is spanned by elements of the form 1λu1µ with |µ| = |λ| =

2d + 1 and u ∈ U̇
ı
(gln), and U̇

ı
(sln)〈d̄〉 is spanned by 1µU̇

ı
(sln)1λ, where

µ, λ ∈ Ẑı
n, |µ| ≡ |λ| ≡ 2d+ 1mod 2n.

We have the following commutative diagram similar to (4.13):

(6.11)

Here the homomorphisms φı
d and ℘ı are defined in a similar way as φ

d and

℘ in (4.13) respectively, but with I replaced by I.

6.5. Inner product on U̇
ı
(sln)

Let 〈−,−〉ı,d be the bilinear form on the ıSchur algebra Sı(n, d) obtained

from the bilinear form 〈−,−〉d on S(n, d) by restriction, thanks to Sı(n, d) ⊂
S(n, d). We define a family of bilinear forms 〈−,−〉ı,d on U̇

ı
(sln) by pulling

back the one on the Schur algebra level via φı
d in (6.11), i.e., 〈x, x′〉ı,d =

〈φı
d(x), φ

ı
d(x

′)〉ı,d for x, x′ ∈ U̇
ı
(sln). We shall study the behavior of these

bilinear forms as d tends to infinity. We need the following analogue of [18,

Lemma 4.2].
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Lemma 6.6. Let Ai (1 ≤ i ≤ k) be matrices such that either Ai − Eθ
h+1,h,

Ai−Eθ
h,h+1, (h ∈ [1, n2−1]), or Ai−Eθ

n

2
, n
2
+2 is diagonal. Let A ∈ Ξ̃ı with |A| =

d. Then there exists matrices Z1, Z2, . . . , Zm∈ Ξ̃ı, and G1(v, u), . . . , Gm(v, u)

∈ Q(v)[u] and an integer p0 ∈ Z such that

{A1 + pI}d+pn ∗ {A2 + pI}d+pn ∗ · · · ∗ {Ak + pI}d+pn ∗ [A+ pI]d+pn

=
m∑

i=1

Gi(v, v
−p)[Zi + pI]d+pn,

for all even integer p ≥ p0.

Proof. The proof follows the arguments of [18, Lemma 4.2] and [2,

Lemma A.1], except that we need to take care of the new case when k = 1

and A1 −Eθ
n

2
, n
2
+2 is diagonal. In this case, we need the following multiplica-

tion formula in Sı(n, d) from [2, Lemma A.13] for the generator td =
∑{X}d

whereX runs over all matrices in Ξı
d such that X−Eθ

n

2
, n
2
+2 is diagonal. (That

td can be written in such a form is due to [2, Lemma 5.5].) For any A ∈ Ξı
d,

we have

td ∗ [A]d =
∑

1≤j≤n

v
∑

j≥p a n

2+2,p−
∑

j>p a n

2 ,p−
∑

p> n

2+1 δj,p [a n

2
+2,j + 1][A− Eθ

n

2
,j

+Eθ
n

2
+2,j ]d. (6.12)

Then we set Zj = A− Eθ
n

2
,j +Eθ

n

2
+2,j and

Gj(v, u)=v
∑

j≥p a n

2+2,p−
∑

j>p a n

2 ,p−
∑

p> n

2+1 δj,pu
δj, n2+1

v
−2(a n

2+2,j+1)
u
2δj, n2+2−1

v−2 − 1
.

The lemma now follows by induction. ���

Remark 6.7. Note that in the multiplication formula in Lemma 6.6, the

canonical basis elements are used instead of the standard basis elements,

which are the same for all generators except td.

We are ready to state the asymptotic behavior of the form 〈·, ·〉ı,d.

Proposition 6.8. As p goes to infinity, the limit limp→∞〈x, x′〉ı,d+pn, for

all x, x′ ∈ U̇
ı
(sln), converges in Q((v−1)) to an element in Q(v).
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Proof. The proof is similar to [18]. We need the adjointness of the bilinear

form 〈·, ·〉ı,d, which is inherited from that of 〈·, ·〉d, and in particular we have

〈td ∗ {A}d, {B}d〉ı,d = 〈{A}d, td ∗ {B}d〉ı,d

from [2, Corollary 3.15]. The only difference from [18] is that we work in a

larger ring Q(v)[u]. Now suppose that G(v, u) =
∑n

i=0 aiu
i where ai ∈ Q(v).

Then we have

G(v, v−p) =

m∑

i=0

aiv
−pi,

which implies that limp→∞G(v, v−p) = a0 in Q((v−1)). ���

Similar to the form 〈·, ·〉, we define a bilinear form 〈−,−〉ı on U̇
ı
(sln)

(independent of d) by letting

〈x, x′〉ı =
n−1∑

d=0

lim
p→∞

〈x, x′〉ı,d+pn, ∀x, x′ ∈ U̇
ı
(sln). (6.13)

6.6. Hybrid monomial basis in U̇
ı
(gln)

As for the construction of the canonical basis for U̇

(sln), we need a ver-

sion of monomial basis on U̇
ı
(gln) which enjoys similar properties in Propo-

sition 6.5 in order to construct the canonical basis of U̇
ı
(sln). We lift the

basis {dMıA} of Sı(n, d) to a basis of U̇
ı
(gln) with the desired properties. The

procedure is exactly the same as used in the construction of the basis {dMıA}
for the ıSchur algebras in Section 6.3. More precisely, recall a monomial

basis {MA|A ∈ Ξ̃ı} for Kı ≡ U̇
ı
(gln) was constructed in [2, Appendix A] by

lifting the (usual) monomial basis {dMA} for ıSchur algebras. we form the

hybrid monomial MıA from MA by substituting any twin product [X1] ∗ [Y1] in

MA as in (6.9) with its leading term {Eθ
n

2
, n
2
+2(a)} with indices d dropped.

Proposition 6.9. The following properties hold for a hybrid monomial M ı
A

with A ∈ Ξ̃ı:

(1) M
ı
A = M

ı
A,

(2) M
ı
A = {A}+ lower term,

(3) the set {M ı
A|A ∈ Ξ̃ı} forms a basis of AU̇

ı
(gln),

(4) φı
d(M

ı
A) = dM

ı
A, whenever aii ≫ 0 for all 1 ≤ i ≤ n

2 .
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Proof. All properties follow readily from the constructions except the last

one. As the hybrid monomial bases for U̇
ı
(sln) and Sı(n, d) are defined mul-

tiplicatively by the same procedure, we only need to show that Property (4)

in the rank one case. We remind that by construction the hybrid monomial

basis in the rank one case is exactly the canonical basis. Hence Property (4)

at rank one is exactly the statement of [2, Proposition A.21]. ���

Now since we have Proposition 6.5, the commutative diagram (6.11),

Proposition 6.9 at hand, the constructions and results in Sections 5 in the

-setting can be rerun for the ı-setting. Let us outline them.

Proposition 6.10. Given A ∈ Ξ̃ı, we have

ξı−2({pIA}) = {(p−2)IA}, ℘ı({pIA}) = ℘ı({(p−2)IA}),

for all even integer p ≫ 0, where pIA = A+ pI.

Proof. The same type arguments of the proof of Proposition 5.3 work

here. ���

We define an equivalence on Ξ̃ı by A ≈ B if and only if A−B = pI for

some even integer p. We set Ξ̂ı = Ξ̃ı/ ≈ . By Proposition 6.10, the following

definition is well defined.

Definition 6.11. We define bǍ = ℘ı({pIA}) ∈ U̇
ı
(sln), ∀p ≫ 0, Ǎ ∈ Ξ̂ı.

Now as we have the key properties established in Propositions 6.9–6.10,

we are in a position to establish the ı-counterparts of results on canonical

bases in Sections 5.2−5.3, whose similar proofs will be skipped. Below is

a summary of the ı-counterparts of Theorem 5.5, Theorem 5.6, Proposition

5.7, and Theorem 5.8.

Theorem 6.12.

(1) The set Bı(sln)={bǍ|Ǎ ∈ Ξ̂ı} forms a basis for U̇
ı
(sln) and for AU̇

ı
(sln).

(2) The structure constants for the algebra U̇
ı
(sln) with respect to the basis

B
ı(sln) are positive (i.e., in N[v, v−1]).

(3) The form 〈−,−〉ı on U̇
ı
(sln) is non-degenerate. Moreover, the basis

B
ı(sln) is almost orthonormal and positive with respect to this form,

i.e., 〈bǍ, bB̌〉ı ∈ δǍ,B̌ + v−1N[[v−1]].
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Again, similar to Proposition 5.9, the signed canonical basis −B
ı(sln)∪

B
ı(sln) is characterized by the bar invariance, integrality and almost or-

thonormality.

Remark 6.13. The main results (Theorem 5.10, Proposition 5.11, Proposi-

tion 5.13, Corollary 5.14, Propositions 5.15–5.16) in Sections 5.4−5.6 admit

ı-analogues here with n replaced by n and  by ı, respectively.

Remark 6.14. Shigechi [21] has established by combinatorial methods cer-

tain positivity of the ı-canonical bases (introduced in [3]) on general tensor

products of modules of the quantum coideal algebra of U(sl2), and this

supports our general positivity conjectures. See Remark 6.13 for a closely

related result.

7. Formulas of Canonical Basis of Sı(2, d)

7.1. Combinatorial identities

Recall the quantum v-binomial coefficients were defined in (2.3) for m ∈
Z and b ∈ N. We introduce the following additional notation

[
m

b

]

v2

=
∏

1≤i≤b

v4(m−i+1) − 1

v4i − 1
.

We first establish two combinatorial identities which are needed in later

computations and could be of some independent interest as well.

Lemma 7.1. For any a ∈ Z and p ∈ N, we have

p∑

s=0

v2s(a+2s)

[
p

s

]

v2

p−s∏

k=1

(1− v2a+4s+4k) = 1.

Proof. Recall the quantum binomial identity

[
p

s

]

v2

=

[
p− 1

s

]

v2

+ v4p−4s

[
p− 1

s− 1

]

v2

. (7.1)

We prove the lemma by induction on p, with the base case for p = 0 being

trivial.
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By (7.1), we can rewrite the sum as a sum of two summands:

p∑

s=0

v2s(a+2s)

[
p

s

]

v2

p−s∏

k=1

(1− v2a+4s+4k) = S1 + S2,

where

S1 =

p∑

s=1

v2s(a+2s)v4p−4s

[
p− 1

s− 1

]

v2

p−s∏

k=1

(1− v2a+4s+4k),

S2 =

p−1∑

s=0

v2s(a+2s)

[
p− 1

s

]

v2

p−s∏

k=1

(1− v2a+4s+4k).

Setting p′ = p− 1, s′ = s− 1 and a′ = a+ 2, we have a+ 2s = a′ + 2s′,

and thus by the inductive assumption (with p′ < p) we obtain

S1 = v2a+4p
p′∑

s′=0

v2s
′(a′+2s′)

[
p′

s′

]

v2

p′−s′∏

k=1

(1− v2a
′+4s′+4k) = v2a+4p.

Setting p′ = p− 1, by the inductive assumption (with p′ < p) again we have

S2 =

p′∑

s=0

v2s(a+2s)

[
p′

s

]

v2

p′−s∏

k=1

(1− v2a+4s+4k) · (1− v2a+4p) = 1− v2a+4p.

Summing up S1 and S2 above we have proved the lemma. ���

Lemma 7.2. For m ∈ N, we have

m∑

j=0

v(m−j)(m−j+1)
∏j

u=1(1− v2(m−u+1))
∏⌊ j

2
⌋

k=1(1− v4k)
= 1.

Proof. Set m = 2n if m is even or m = 2n + 1 otherwise. We first sum up

the two summands with j = 2d and j = 2d+ 1, for fixed d with 0 ≤ d ≤ n:

v(m−2d)(m−2d+1)

∏2d
u=1(1− v2(m−u+1))
∏d

k=1(1− v4k)

+ v(m−2d−1)(m−2d)

∏2d+1
u=1 (1− v2(m−u+1))
∏d

k=1(1− v4k)
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= v(m−2d−1)(m−2d)

∏2d
u=1(1− v2(m−u+1))
∏d

k=1(1− v4k)

= v(m−2d−1)(m−2d)

[
n

d

]

v2

d∏

k=1

(1− v4n−4d+4k∓2),

where the sign ‘−’ is always taken for m = 2n and ‘+’ for m = 2n + 1 on

the right-hand side above and similar places below. Note that the above is

actually valid for d = n in case m = 2n as well, where the second summand

on the left-hand side is simply zero.

Hence, noting

[
n

d

]

v2

=

[
n

n− d

]

v2

and setting s = n− d, we have

m∑

j=0

v(m−j)(m−j+1)
∏j

u=1(1− v2(m−u+1))
∏⌊ j

2
⌋

k=1(1− v4k)

=

n∑

d=0

v(2n−2d∓1)(2n−2d)

[
n

d

]

v2

d∏

k=1

(1− v4n−4d+4k∓2)

=

n∑

s=0

v2s(2s∓1)

[
n

s

]

v2

n−s∏

k=1

(1− v4s+4k∓2) = 1,

where the last equation uses Lemma 7.1 (where we set a = ∓1 and p = n).

The lemma is proved. ���

7.2. The bar conjugate of the standard basis

Let

T =
⊔

d≥0

S
ı(2, d)

be the Q(v)-vector space with the standard basis {[Aa,r]|a, r ∈ N}. As before
we set [Aa,r] = 0 if a < 0 or r < 0. We introduce a shorthand notation to

denote the monomial basis element Ma,r = dMAa,r . By [2, (5.4)], we have

Ma,r = [Aa,r] +
r∑

i=1

vβa(i)

[
a+ i

i

]
[Aa+i,r−i] (7.2)
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where

βa(i) = ai− 1

2
i(i+ 1). (7.3)

Then {Ma,r|a, r ∈ N, a + b = d} forms a monomial basis for S
ı(2, d), and

so {Ma,r|a, r ∈ N} forms a monomial basis for T. There is a Q-linear bar

involution on S
ı(2, d) for all d and hence on T, denoted by , which fixes

each Ma,r. Note that

[
m

a

]
= v2a(a−m)

[
m

a

]
, and Ma,r = Ma,r. (7.4)

The following theorem is obtained with help from a UVA undergraduate

Tahseen Rabbani (supported by NSF), whose computer computation for

small values of r was crucial in formulating the precise statement.

Theorem 7.3 (joint with Tahseen Rabbani). For all a, r ∈ N, we have

[Aa,r] =

r∑

i=0

v−ia−(i+1
2 ) ·

∏i
k=1(1− v2(a+k))
∏⌊ i

2
⌋

k=1(1− v4k)
[Aa+i,r−i]

=

r∑

i=0

∏i
k=1(v

−a−k − va+k)
∏⌊ i

2
⌋

k=1(1− v4k)
[Aa+i,r−i].

Proof. The two expressions in the statement are clearly equal. We shall

proceed by induction on r. The base case for r = 0 is clear.

Assume the formula is verified for [Aa,r′ ] for all a, r
′ ∈ N such that r′ < r.

By (7.2) and Ma,r = Ma,r, it suffices to verify the formula for [Aa,r] as given

in the theorem satisfies that

[Aa,r] +

r∑

i=1

v−βa(i)

[
a+ i

i

]
[Aa+i,r−i] = [Aa,r] +

r∑

i=1

vβa(i)

[
a+ i

i

]
[Aa+i,r−i]

Equating the coefficients of [Aa+m,r−m] on both sides of the above iden-

tity, we are reduced to verifying the following identity for 0 ≤ m ≤ r:

∑

i+j=m

v−ai+ 1
2
i(i+1)

[
a+ i

i

] ∏j
k=1(v

−a−i−k − va+i+k)
∏⌊ j

2
⌋

k=1(1− v4k)
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= v−am− 1
2
m(m+1)

[
a+m

m

]
.

(We have used (7.4) on deriving the right-hand side above.)

After further simplification using

[
a+ i

i

]
= [a+i]!

[a]![i]! and i = m − j, the

above identity is reduced to the following identity for m ≥ 0:

m∑

j=0

v(m−j)(m−j+1) [a+m− j]!

[m− j]!

∏j
u=1[a+m+ 1− u] · (1− v2)j

∏⌊ j
2
⌋

k=1(1− v4k)
=

[a+m]!

[m]!
.

Thanks to [a +m− j]!
∏j

u=1[a +m+ 1 − u] = [a +m]!, the above identity

is equivalent to the identity in Lemma 7.2. The theorem is proved. ���

Denote the coefficient of Aa+i,r−i in Theorem 7.3 above, which is inde-

pendent of r, by

bia = v−ia−(i+1
2 ) ·

∏i
k=1(1− v2(a+k))
∏⌊ i

2
⌋

k=1(1− v4k)
, with b0a = 1. (7.5)

Then we have

[Aa,r] =

r∑

i=0

bia · [Aa+i,r−i], for all a, r ∈ N. (7.6)

Example 7.4. For a ∈ N, we have

[Aa,0] = [Aa,0], [Aa,1] = [Aa,1] + (v−a−1 − va+1)[Aa+1,0],

[Aa,2] = [Aa,2] + (v−a−1 − va+1)[Aa+1,1]

+
v−2a−3(1− v2(a+1))(1 − v2(a+2))

1− v4
[Aa+2,0].

7.3. Formulas for canonical basis of Sı(2, d)

The canonical basis is the Q(v)-basis {{Aa,r}|a, r ∈ N} for T, which

is completely determined by the bar invariance together with the following
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property:

{Aa,r} = [Aa,r] +

r∑

i=1

γa,r(i)[Aa+i,r−i], for γa,r(i) ∈ v−1Z[v−1]. (7.7)

We denote γa,r(0) = 1.

Lemma 7.5. The polynomials γa,r(i) are independent of r; we shall write

γa(i) = γa,r(i).

Proof. We shall show by induction on i ≥ 0. The case for i = 0 is clear.

By (7.7), we have
∑r

i=0 γa,r(i)[Aa+i,r−i] =
∑r

j=0 γa,r(j)[Aa+j,r−j ].

Equating the coefficients of [Aa+i,r−i] on both sides of this equation with

the help of (7.6) gives us

γa,r(i) − γa,r(i) =

i−1∑

j=0

γa,r(j) b
i−j
a+j . (7.8)

It follows from this and an easy induction on i that γa,r(i) is independent of

r. ���

The next theorem establishes formulas for the canonical basis {Aa,r} for

S
ı(2, d) for all d, or equivalently by (7.7), determines γa(i) for all a, i ∈ N.

Theorem 7.6.

(1) For a, s ∈ N with a even, we have

γa(2s) = v−2s2−s
s∏

k=1

1− v−2a−4k

1− v−4k
,

γa(2s + 1) = v−a−2s2−3s−1
s∏

k=1

1− v−2a−4k

1− v−4k
.

(2) For a, s ∈ N with a odd, we have

γa(2s) = v−2s2+s
s∏

k=1

1− v−2a−4k−2

1− v−4k
,

γa(2s+ 1) = v−a−2s2−s−1
s∏

k=1

1− v−2a−4k−2

1− v−4k
.
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In other words, these polynomials γa(r) are all essentially v2-binomial

coefficients.

Proof. Let us rewrite (7.8) as

γa(r) =
r∑

i=0

γa(i) b
r−i
a+i. (7.9)

This formula uniquely determines the polynomials γa(r) for all a, r ∈ N (by

induction on r), which satisfy γa(0) = 1 and γa(r) ∈ v−1Z[v−1] for r ≥ 1. It

suffices to verify that the formulas for γa(r) given in the theorem do satisfy

(7.9). The verification is divided into 4 very similar cases, depending on the

parity of a and the parity of r.

Assume first that both a and r are odd. Set r = 2p+ 1. Let 0 ≤ s ≤ p.

We have

γa(2s) b
r−2s
a+2s = v2s(a+2s)−ar−(r+1

2 )
s∏

k=1

1− v2a+4k+2

1− v4k
·
∏r−2s

u=1 (1− v2a+4s+2u)
∏⌊ r

2
⌋−s

k=1 (1− v4k)
,

γa(2s + 1) br−2s−1
a+2s+1 = v2s(a+2s)−ar−(r+1

2 )+2a+4s+2
s∏

k=1

1− v2a+4k+2

1− v4k

·
∏r−2s−1

u=1 (1− v2a+4s+2u+2)
∏⌊ r−1

2
⌋−s

k=1 (1− v4k)
.

The above two formulas have almost identical factors except that γa(2s)b
r−2s
a+2s

has an extra factor (1−v2a+4s+2) while γa(2s+1)br−2s−1
a+2s+1 has an extra factor

v2a+4s+2. Hence,

r∑

i=0

γa(i) b
r−i
a+i =

p∑

s=0

(
γa(2s) b

r−2s
a+2s + γa(2s + 1) br−2s−1

a+2s+1

)

=

p∑

s=0

v2s(a+2s)−ar−(r+1
2 )

∏s
k=1(1− v2a+4k+2)∏s

k=1(1− v4k)
·
∏2p−2s

u=1 (1− v2a+4s+2u+2)
∏p−s

k=1(1− v4k)
.

Using

2p−2s∏

u=1

(1− v2a+4s+2u+2) =

p∏

k=s+1

(1− v2a+4k+2) ·
p−s∏

k=1

(1− v2a+4s+4k),
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we can rewrite the above equation as

r∑

i=0

γa(i) b
r−i
a+i = v−ar−(r+1

2 )
p∑

s=0

v2s(a+2s)

∏p
k=1(1− v2a+4k+2)

∏s
k=1(1− v4k)

∏p−s
k=1(1− v4k)

·
p−s∏

k=1

(1− v2a+4s+4k). (7.10)

On the other hand, we have

γa(r) = v−ar−(r+1
2 )

∏p
k=1(1− v2a+4k+2)∏p

k=1(1− v4k)
. (7.11)

Therefore, the verification of the identity (7.9) follows from (7.10)-(7.11) and

the identity in Lemma 7.1, and the theorem is proved in the case when both

a and r are odd.

In the remaining three cases when not both a and r are odd, we have

analogous reductions of verification of (7.9) to the same identity in Lemma

7.1, and we shall skip the details. ���

Example 7.7. We have γa(0) = 1, γa(1) = v−a−1, and

γa(2) =

{
v−3−v−2a−7

1−v−4 , for a even

v−1−v−2a−7

1−v−4 , for a odd.

Then we have

{Aa,0} = [Aa,0], {Aa,1} = [Aa,1] + v−a−1[Aa+1,0],

{Aa,2} = [Aa,2] + v−a−1[Aa+1,1] + γa(2)[Aa+2,0].

Acknowledgments

We are grateful to Huanchen Bao and Zhaobing Fan for related collab-

orations and many stimulating discussions. We thank Olivier Schiffmann

and Ben Webster for very helpful comments. The second author is partially

supported by NSF DMS-1405131; he thanks the Institute of Mathematics,

Academia Sinica (Taipei) and Institut Mittag-Leffler for an ideal working

environment and support.



✐

“BN13N21” — 2018/1/30 — 14:56 — page 197 — #55
✐

✐

✐

✐

✐

2018] POSITIVITY VS NEGATIVITY OF CANONICAL BASES 197

References

1. A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for quantum defor-
mations of GLn, Duke Math. J., 61 (1990), 655-677.

2. H. Bao, J. Kujawa, Y. Li and W. Wang, Geometric Schur duality of classical
type, (with Appendix by Bao, Li and Wang), Transform. Groups (to appear),
arXiv:1404.4000v3.

3. H. Bao and W. Wang, A new approach to Kazhdan-Lusztig theory of type B via
quantum symmetric pairs, Astérisque (to appear), arXiv:1310.0103v2.

4. H. Bao and W. Wang, Canonical bases arising from quantum symmetric pairs, in
preparation, 2016.

5. T. Braden, Hyperbolic localization of intersection cohomology, Transform. Groups, 8
(2003), 209-216.

6. B. Deng, J. Du, B. Parshall and J. Wang, Finite dimensional algebras and quantum
groups. Mathematical Surveys and Monographs, 150. American Mathematical Society,
Providence, RI, 2008.

7. Z. Fan and Y. Li, Geometric Schur duality of classical type II, Trans. Amer. Math.

Soc. Ser. B2 (2015), 51-92.

8. Z. Fan and Y. Li, Positivity of canonical bases under comultiplication, arXiv:
1511.02434v3.

9. Q. Fu, Canonical bases for modified quantum gln and q-Schur algebras, J. Algebra,
406 (2014), 308-320.

10. R. Green, Hyperoctahedral Schur algebras, J. Algebra, 192 (1997), 418-438.

11. I. Grojnowski and G. Lusztig, On bases of irreducible representations of quantumGLn.
In: Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989), 167-174, Contemp.
Math., 139, Amer. Math. Soc., Providence, RI, 1992.

12. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras,
Invent. Math., 2 (1979), 165-184.

13. M. Khovanov and A. Lauda, A categorification of quantum sl(n), Quantum Topology,
1 (2010), 1-92.

14. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer.

Math. Soc., 3 (1990), 447-498.

15. G. Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Reprint of
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