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Abstract

We describe the structure of Sylow ℓ-subgroups of a finite reductive group G(Fq)

when q 6≡ 0 (mod ℓ) that we find governed by a complex reflection group attached to G

and ℓ, which depends on ℓ only through the set of cyclotomic factors of the generic order

of G(Fq) whose value at q is divisible by ℓ. We also tackle the more general case of groups

G
F where F is an isogeny some power of which is a Frobenius morphism.

1. Introduction

Definition 1.1. Let G be a connected reductive group over Fp, and F an

isogeny such that some power of F is a Frobenius endomorphism; then GF

is what we call a finite reductive group. To this situation we attach a positive

real number q such that for some integer n, the isogeny Fn is the Frobenius

endomorphism attached to a Fqn-structure.

The goal of this note is to describe the Sylow ℓ-subgroups of GF when

ℓ is a prime different from p and G is semisimple. The structure of the

Sylow ℓ-subgroups of a Chevalley group was first described by [6] where

they observed that they had a large normal abelian subgroup (Z/n)aℓ where
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n is the ℓ-part of Φd(q), where d is the multiplicative order of q (mod ℓ),

and they computed a case by case.

In 1992 [3] exhibited subtori of GF attached to eigenspaces of elements

of the Weyl reflection coset of (G, F ) whose F -stable points are the large

abelian groups of [6]. To these eigenspaces are attached complex reflection

groups by Springer’s theory.

We show that the structure of the Sylow ℓ-subgroups of GF is deter-

mined by these complex reflection groups. The results of this note in the case

when F is a Frobenius were obtained by the first author in an unpublished

note [5] of 1992; the second author has found a simpler (containing more

casefree steps) proof which is an occasion to publish these results. Some of

our results appeared also implicitly in [7].

The second author wishes to thank Carles Broto for a visit to Barcelona,

which started him thinking about this topic.

We thank Raphaël Rouquier for discussions which helped with the proofs

of Propositions 2.8 and 2.17(4).

2. The Generic Sylow Theorems

Let G be as in Definition 1.1; an F -stable maximal torus T of G defines

the Weyl group W = NG(T)/T, that we may identify to a reflection sub-

group of GL(X(T)) where X(T) := Hom(T,Gm), attached to the root sys-

tem Σ ⊂ X(T) of G with respect to T. The isogeny F induces a p-morphism

F ∗ ∈ End(X(T)) by the formula F ∗(x) = x ◦ F for x ∈ X(T), that is there

is a permutation σ of Σ such that for α ∈ Σ we have F ∗(α) = qασ(α) for

some power qα of p; in particular F ∗ ∈ NEnd(X(T))(W ).

If q, n are as in Definition 1.1 then F ∗n is qn times an element of

GL(X(T)) of finite order, thus over X(T)⊗ Z[q−1] we have F ∗ = qφ where

φ is an automorphism of finite order which normalizes W . We call Wφ the

reflection coset associated to (G, F ).

Our setting is more general than that of [3] who considered only the

special cases where F is a Frobenius endomorphism, or where GF is a Ree

or Suzuki group. The results of the next subsection allow to extend the

definition of Sylow Φ-subtori of [3] to any (G, F ) as in Definition 1.1.
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F -indecomposable tori

Definition 2.1. For G, F as in Definition 1.1, a non-trivial subtorus of G is

called F -indecomposable if it is F -stable and contains no proper non-trivial

F -stable subtorus.

We say that a group G is an almost direct product of subgroups G1 and

G2 if they commute, generate G and have finite intersection, and we define

similarly an almost direct product of k subgroups by induction on k.

Proposition 2.2. For G, F as in Definition 1.1, any F -stable subtorus T

of G is an almost direct product of F -indecomposable tori S1, . . . ,Sk and

|TF | = |SF
1 | . . . |SF

k |.

Proof. An F -stable subtorus S corresponds to a pure F -stable sublattice

X ′ ⊂ X := X(T) (see for example [1, III, Proposition 8.12]). Let d be the

smallest power of F which is a split Frobenius, thus on X(T) we have F ∗d =

qdId. Let π ∈ End(X⊗Q) be a projector onX ′⊗Q. Then in End(X⊗Q) we

can define the F -invariant projector π′ := d−1
∑d

i=1 F
∗iπF ∗−i andKerπ′∩X

is another F -stable pure sublattice which after tensoring by Q becomes a

complement to X ′ ⊗ Q. This corresponds to an F -stable subtorus S′ such

that K := S ∩ S′ is finite and T = SS′. Iterating, we get the first part of

the proposition.

The second part of the proposition results from the next two lemmas.���

Lemma 2.3. For G, F as in Definition 1.1, and K an F -stable finite normal

subgroup of G, then |(G/K)F | = |GF |.

Proof. First, we notice that K is central, thus abelian, since conjugating

by G being continuous must be trivial on K.

Then, the Galois cohomology long exact sequence: 1 → KF →GF →
(G/K)F →H1(F,K)→1 shows the result using that |KF | = |H1(F,K)|. ���

Lemma 2.4. Let G as Definition 1.1 be an almost direct product of F -stable

connected subgroups G = G1 . . .Gk. Then |GF | = |GF
1 | . . . |GF

k |.

Proof. It is enough to consider the case k = 2 and then iterate. Thus, we

assume G = G1G2 where K = G1 ∩G2 is finite. We quotient by K, which

makes the product direct, and apply Lemma 2.3 twice. ���
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Lemma 2.5. Let S be an F -indecomposable torus, let η be the smallest

power such that qη ∈ Z, and let d be the smallest power such that F dη

is a split Frobenius on S. Let F ∗ = qφ on X(S); then the characteristic

polynomial Φ of φ is a factor in Z[x, q−1] of Φd(x
η), where Φd(x) denotes

the d-th cyclotomic polynomial. Further qdegΦΦ(x/q) ∈ Z[x] is irreducible

and |SF | = Φ(q).

Proof. Since F ∗dη acts as qdη on X := X(S), the minimal polynomial P of

F ∗ divides xdη − qdη.

The polynomial P is irreducible over Z, otherwise a proper nontrivial

factor P1 defines an F ∗-stable pure proper non-trivial sublatticeKer(P1(F
∗))

of X, which contradicts F -indecomposability of S.

It follows that X is a Z[x]/P -module by making x act by F ∗, and

X ⊗ Q[x]/P is a one-dimensional Q[x]/P -vector space, otherwise a proper

nontrivial subspace would define an F ∗-stable pure sublattice of X. It fol-

lows that dimS = degP = dimX and thus P is also the characteristic

polynomial of F ∗.

We have in Z[x] the equality xdη − qdη =
∏

d′|d(q
η deg Φd′Φd′(x

η/qη)).

Since P is irreducible it divides one of the factors, and since dη is minimal

such that F ∗dη = qdηId, that is minimal such that P divides xdη − qdη,

we have that P divides qη deg ΦdΦd(x
η/qη); equivalently Φ = q− degPP (qx)

divides Φd(x
η).

We have |SF |= |Irr(SF )|= |X/(F ∗−1)X|=det(F ∗−1) = (−1)deg PP (1)

= (−q)deg ΦΦ(1/q) where the second equality reflects the well known group

isomorphism Irr(SF ) ≃ X/(F ∗ − 1)X and the third is a general property

of lattices. Finally, since Φ is real and divides Φd(x
η), its roots are stable

under taking inverses, thus (−q)deg ΦΦ(1/q) = Φ(q). ���

We call q-cyclotomic the polynomials Φ of Lemma 2.5. In other terms

Definition 2.6. For q as in Definition 1.1, where qη is the smallest power of

q in Z, we call q-cyclotomic the monic polynomials Φ ∈ Z[x, q−1] such that

qdegΦΦ(x/q) is a Z[x]-irreducible factor of some xdη − qdη.

In the study of semisimple reductive groups we will need the q-cyclotomic

polynomials of Lemma 2.7. Note that if d is minimal in Definition 2.6, then
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Φ is a factor in Z[x, q−1] of Φd(x
η). We are interested in that number d rather

than dη, and to emphasize this we write Φη,d in the following examples.

Lemma 2.7. When q ∈ Z, the q-cyclotomic polynomials are the cyclotomic

polynomials.

When q is an odd power of
√
2, the following polynomials are q-cyclotomic:

Φ2,1(x) := Φ1(x
2), Φ2,2(x) := Φ2(x

2), Φ2,6(x) := Φ6(x
2), the factors Φ′

2,4 :=

x2 +
√
2x+ 1 and Φ′′

2,4 := x2 −
√
2x+ 1 of Φ4(x

2), and the factors Φ′
2,12 :=

x4+x3
√
2+x2+x

√
2+1 and Φ′′

2,12 := x4−x3
√
2+x2−x

√
2+1 of Φ12(x

2).

When q is an odd power of
√
3, the following polynomials are q-cyclotomic:

Φ2,1(x), Φ2,2(x) and the factors Φ′
2,6 := x2+x

√
3+1 and Φ′′

2,6 := x2−x
√
3+1

of Φ6(x
2).

Proof. When q ∈ Z the formula P 7→ q− degPP (qx) establishes a bijection

between Z[x]-irreducible factors of xd − qd and Z[x]-irreducible factors of

xd − 1, that is cyclotomic polynomials, which gives the first case of the

lemma.

For the other cases, we have to check for each given Φ that qdeg ΦΦ(x/q)

is in Z[x] and irreducible. ���

Proposition 2.8. Let S, η, d, Φ be as in Lemma 2.5 and let P =

qdegΦΦ(xη/qη) be the characteristic polynomial of F ∗.

(1) Assume that either q ∈ Z or that Z[x, q−η]/P is integrally closed. Then

SF ≃ Z/Φ(q).

(2) Let m be a divisor of Φ(q), and assume either that d ∈ {1, 2} and

q ∈ Z or that m is prime to dη; then we have a natural isomorphism

Irr(SF )/mIrr(SF ) ≃ Ker(F ∗ − 1 | X(S)/mX(S)).

Proof. Proceeding as in the proof of Lemma 2.5 we set X = X(S) and

X̄ = X/(F ∗ − 1)X ≃ Irr(SF ). Letting x act as F ∗ makes X into a Z[x]/P -

module, and X̄ a Z[x]/(P, x− 1)-module. Since Z[x]/(P, x− 1) = Z/P (1) =

Z/Φ(q) we find that the exponent of X̄ divides Φ(q).

Let A := Z[x, q−η]/P . The extension Z[x]/P →֒ A/P is flat thus

X̄ ⊗Z[x]/P A ≃ X ′/(F ∗ − 1)X ′ where X ′ = X ⊗Z[x]/P A; and since the expo-

nent of X̄ divides Φ(q) which is prime to qη, we have X̄ ≃ X̄⊗Z[x]/PA. Under

the assumptions of (1) the ring A is Dedekind: if η 6= 1 then A is integrally

closed thus Dedekind; if η = 1 then A ≃ Z[x, q−1]/Φd where the isomorphism
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is given by x 7→ x/q, and is a localization of the Dedekind ring Z[x]/Φd by q.

Thus X ′ identifies to a fractional ideal I of A and X̄ ≃ I/(x−1)I. If e is the

exponent of X̄ we have thus eI ⊂ (x− 1)I, which implies that x− 1 divides

e in A. This in turn implies that the norm (−1)deg PP (1) = Φ(q) of (x− 1)

divides e in Z, thus e = Φ(q) and X̄ ≃ Z/Φ(q) and the same isomorphism

holds for the dual abelian group SF .

For (2), note that by construction X̄/mX̄ is the biggest quotient of X

on which both F ∗−1 and the multiplication by m vanish. It is thus equal to

the biggest quotient of X/mX on which F ∗ − 1 vanishes. Thus the question

is to see that Ker(F ∗ − 1) has a complement in X/mX.

If q ∈ Z and d ∈ {1, 2} we have P = x± q so X ≃ Z on which F ∗ acts

by ∓q and X̄ = X/(q± 1) of which X/mX is a quotient, so F ∗ − 1 vanishes

on X/mX which is thus equal to X̄/mX̄ and there is nothing to prove.

Assume now m prime to dη. There exists R ∈ Z[x] such that in Z[x]

we have P = (x− 1)R + P (1). Taking derivatives, we get P ′ = (x− 1)R′ +

R, whence R(1) = P ′(1). Let δ be the discriminant of P ; we can find

polynomials M,N ∈ Z[x] such that MP + NP ′ = δ, which evaluating at

1 gives M(1)P (1) + N(1)P ′(1) = δ. Since q is prime to P (1), thus to m,

and δ is a divisor of the discriminant of Xdη − qdη, equal to qdη(dη−1)(dη)dη ,

thus prime to m, we find that P ′(1) is prime to m. In (Z/m)[x] we have

P = (x − 1)R, thus applied to F ∗ we get that on X/mX we have 0 =

P (F ∗) = (F ∗ − 1)R(F ∗), whence Ker(F ∗ − 1) + Ker(R(F ∗)) = X/mX.

Since R(1) is prime to m, we can write 1 ≡ Q(x − 1) + aR in (Z/m)[x] for

some Q ∈ (Z/m)[x] and a the inverse (mod m) of R(1). This proves that

Ker(F ∗−1)∩Ker(R(F ∗)) = 0 thus X/mX is the direct sum of Ker(F ∗−1)

and Ker(R(F ∗)). ���

Complex reflection cosets. (1) to (3) below are classical results of Springer

and Lehrer.

Proposition 2.9. Let V be a finite dimensional vector space over a subfield

k of C, let W ⊂ GL(V ) be a finite complex reflection group and let φ ∈
NGL(V )(W ), so that Wφ is a reflection coset; let (d1, ε1), . . . , (dn, εn) be its

generalized degrees (see for instance [2, 4.2]). For ζ a root of unity define

a(ζ) as the multiset of the di such that ζdi = εi. Then:
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(1) For any root of unity ζ, the maximum dimension when wφ runs over

Wφ of a ζ-eigenspace of wφ on V ⊗k k[ζ] is |a(ζ)|.
(2) For wφ ∈ Wφ denote Vw,ζ ⊂ V ⊗k k[ζ] its ζ-eigenspace. Assume

dimVw,ζ = |a(ζ)| and let C = CW (Vw,ζ) and N = NW (Vw,ζ). Then

N/C is a complex reflection group acting on Vw,ζ, with reflection degrees

a(ζ).

(3) Any two subspaces Vw,ζ and Vw′,ζ of dimension |a(ζ)| are W -conjugate.

(4) For wφ as in (2) the natural actions of wφ on N and C induce the trivial

action on N/C.

(5) Let a ∈ Z be such that (Wφ)a = Wφ and such that ζ and ζa are conjugate

by Gal(k[ζ]/k). Then for wφ as in (2) there exists v ∈ NW (N)∩NW (C)

which conjugates wφC to (wφ)aC.

Proof. For (1) see for instance [2, 5.2], for (2) see [2, 5.6(3) and (4)] and

for (3) see [2, 5.6 (1)]. (4) results from the observation that if n ∈ N and

v ∈ Vw,ζ then (n−1 · wφn)(v) = (n−1wφn(wφ)−1)(v) = (n−1wφn)(ζ−1v) =

(n−1wφ)(ζ−1n(v)) = (n−1)(n(v)) = v thus n−1 · wφn ∈ C.

For (5), Gal(k[ζ]/k) acts naturally on V ⊗kk[ζ], commuting with GL(V ),

in particular with W and φ. If σ ∈ Gal(k[ζ]/k) is such that σ(ζ) = ζa, let

ζa
′

= σ−1(ζ). Then σ−1(Vw,ζ) = Vw,ζa′ . It follows that N = NW (Vw,ζa′ ) and

C = CW (Vw,ζa′ ).

Now since a′ is the inverse of a modulo the order of ζ the space Vw,ζa′ is

the ζ-eigenspace of (wφ)a. By assumption we have (wφ)a ∈ Wφ. Since two

maximal ζ-eigenspaces of elements of Wφ are conjugate by (3) there exists

v ∈ W which conjugates Vw,ζ to Vw,ζa′ , and v ∈ NW (N) ∩ NW (C) since

N = NW (Vw,ζa′ ) and C = CW (Vw,ζa′ ). The element v thus conjugates the

set wφC of elements which have Vw,ζ as ζ-eigenspace to the set (wφ)aC of

elements which have Vw,ζa′ as ζ-eigenspace. ���

Generic Sylow subgroups. We define the Sylow Φ-subtori of (G, F ), first

in the case when G is quasi-simple, then in the case of descent of scalars.

From now on we assume G semisimple. Then, if (d1, ε1), . . . , (dn, εn) are

the generalized degrees of the reflection coset Wφ, we have (see [9, 11.16])

|GF | = q
∑

i(di−1)
∏

i

(qdi − εi). (2.1)
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Proposition 2.10. Let G be as in Definition 1.1 and quasi-simple. Then

we can rewrite the order formula (2.1) for |GF | as

|GF | = q
∑

i(di−1)
∏

Φ∈P

Φ(q)nΦ (2.2)

where P is a set of q-cyclotomic polynomials, and where 0 6= nΦ = |a(ζ)|
(see Proposition 2.9) for any root ζ of Φ. For each Φ ∈ P there exists a

non-trivial F -stable subtorus SΦ of G such that |SF
Φ | = Φ(q)nΦ.

We note that if GF is a Ree or Suzuki group, the η of Definition 2.6

is 2. Otherwise η = 1 and the q-cyclotomic polynomials are cyclotomic

polynomials.

We call any F -stable torus S such that |SF | is a power of Φ(q) a Φ-

torus, and tori SΦ as above are called Sylow Φ-subtori of (G, F ) — we

abuse notation and call them Sylow Φ-subtori of G when F is clear from the

context; they are the almost direct product of nφ F -indecomposable Φ-tori.

Proof. Proposition 2.10 is essentially in [3] but let us reprove it.

First, we note that assuming |GF | has a decomposition of the form (2.2),

the value of nΦ results from (2.1): let ζ be any root of Φ(x). Then (x − ζ)

divides Φ(x) with multiplicity one, and does not divide any another Φ′(x)

for Φ′ ∈ P since the Φ(x/q) are distinct irreducible polynomials in Q[x].

Thus nΦ is the number of pairs (di, εi) such that x− ζ divides xdi − εi.

There is a decomposition of the form (2.2): if η = 1 we get such a

decomposition of |GF | by decomposing each term of (2.1) into a product of

cyclotomic polynomials. Otherwise GF is a Ree or Suzuki group, η = 2 and

q is an odd power of
√
2 or

√
3, and the set P and the decomposition of the

form (2.2) is given by what follows:

(G, F ) |GF | generalized degrees of Wφ

2B2(q
2) q4(Φ2,1Φ

′

2,4Φ
′′

2,4)(q) {(2, 1), (4,−1)}
2F4(q

2) q24(Φ2
2,1Φ

2
2,2Φ

′2
2,4Φ

′′2
2,4Φ2,6Φ

′

2,12Φ
′′

2,12)(q) {(2, 1), (6,−1), (8, 1), (12,−1)}
2G2(q

2) q6(Φ2,1Φ2,2Φ
′

2,6Φ
′′

2,6)(q) {(2, 1), (6,−1)}

Note that for η = 2 our “q-cyclotomic polynomials” are the “(tp)-cyclotomic

polynomials” defined in [3, 3.14].
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To construct the torus SΦ for Φ ∈ P, let us choose ζ a root of Φ and w

as in (2) of Proposition 2.9. Then if Tw is a maximal torus of type w with

respect to T, so that (Tw, F ) ≃ (T, wF ), the characteristic polynomial of

wφ on X(T) has Φ(x)nΦ as a factor; the kernel of Φ(wφ) on X(T) is a pure

sublattice corresponding to a subtorus SΦ of Tw such that |SF
Φ |=Φ(q)nΦ .���

Proposition 2.11. Let (G, F ) be as in Definition 1.1, semisimple and such

that the Dynkin diagram of G has n connected components permuted tran-

sitively by F . Then there exists a reductive group G1 with isogeny F1

such that up to isomorphism G is a “descent of scalars” G = Gn
1 with

F (g1, . . . , gn) = (g2, . . . , gn, F1(g1)).

Then GF ≃ GF1
1 , and if the scalar associated to (G, F ) is q that associ-

ated to (G1, F1) is q1 := qn. Thus we have |GF | = qn
∑

i(di−1)
∏

Φ∈P Φ(qn)nΦ

where di,P, nφ are as given by Proposition 2.10 for (G1, F1, q1).

Here again, for Φ ∈ P there exists a Sylow Φ-subtorus of G, that is an

F -stable subtorus SΦ such that |SF
Φ | = Φ(qn)nΦ .

Proof. The proposition is obvious apart perhaps for the statement about

the existence of SΦ. This results in particular from the following lemma that

we need for future reference. ���

Lemma 2.12. In the situation of Proposition 2.11, let (T, wF ) where T =

Tn
1 be a maximal torus of type w = (1, . . . , 1, w1) of G and define φ on

V = X(T)⊗C (resp. φ1 on V1 = X(T1)⊗C) by F ∗ = qφ (resp. F ∗
1 = q1φ1).

Then if the characteristic polynomial of w1φ1 is P (x), that of wφ is P (xn).

Let Φ be a q1-cyclotomic factor of P (corresponding to a Z[x]-irreducible

factor of the characteristic polynomial of w1F
∗
1 ) and let ζ be a root of Φ(xn).

Denote by Vζ the ζ-eigenspace of wφ (resp. by V1,ζn the ζn-eigenspace of

w1φ1).

Let S1 be the Sylow Φ-subtorus of (G1, F1) determined by Ker(Φ(w1φ1)),

and S be the wF -stable subtorus of T determined by Ker(Φ((wφ)n)). Then

S is a Sylow Φ-subtorus of (G, F ) and

NW (Vζ)

CW (Vζ)
≃ NW1(V1,ζn)

CW1(V1,ζn)
≃ NG1(S1)

CG1(S1)
≃ NG(S)

CG(S)

and we have an isomorphism SwF ≃ S
w1F1
1 compatible with the actions of

NG(S)/CG(S) and NG1(S1)/CG1(S1) and the above isomorphism.
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Proof. LetX = X(T), X1 = X(T1). OnX ≃ Xn
1 we have F ∗(x1, . . . , xn) =

(x2, . . . , xn, F
∗
1 (x1)), thus φ(x1, . . . , xn) = (q−1x2, . . . , q

−1xn, q1q
−1x1). It

follows by an easy computation that Vζ is equal to the set of (x, (qζ)x, . . .,

(qζ)n−1x) where x ∈ V1,ζn , that CW (Vζ) = {(v1, . . . , vn) | vi ∈ CW1(V1,ζn)}
and that NW (Vζ) = {(vv1, . . . , vvn) | v ∈ NW1(V1,ζn), vi ∈ CW1(V1,ζn)}. This
shows that NW (Vζ)/CW (Vζ) ≃ NW1(V1,ζn)/CW1(V1,ζn). Since when ζ runs

over the roots of Φ(xn) the q1ζ
n are roots of the same Z[x]-irreducible poly-

nomial qdeg Φ1 Φ(x/q1), the ζn are Galois conjugate thus CW1(V1,ζn) (resp.

NW1(V1,ζn)) centralizes (resp. normalizes) all the conjugate eigenspaces,

whence our claim that NW1(V1,ζn)/CW1(V1,ζn) ≃ NG1(S1)/CG1(S1). Now

Ker(Φ((wφ)n)) is the span of Vζ for all roots ζ of Φ(xn) and by the analysis

above CW (Vζ) and NW (Vζ) are independent of ζ, thus isomorphic to CW (S)

and NW (S).

We have the following commutative diagram

X
wF ∗−1−−−−→ X

Res−−−−→ Irr(TwF ) −−−−→ 1




y
Σ





y
Σ





y

∼

X1
w1F ∗

1 −1−−−−−→ X1
Res−−−−→ Irr(Tw1F1

1 ) −−−−→ 1

where Σ is the map (x1, . . . , xn) 7→ x1 + . . . + xn. Since we have Σ ◦
(wF )n = w1F1 ◦ Σ, for any polynomial Q the morphism Σ induces a sur-

jective morphism Ker(Q((wF ∗)n)) → Ker(Q(w1F
∗
1 )) whence for Q = P a

surjection Irr(SwF ) → Irr(Sw1F1
1 ); since |SwF | is prime to |TwF/SwF | this

surjection must be an isomorphism. Extended to V = X ⊗ C, the map

Σ sends Vζ to V1,ζn and sends the action of NW (Vζ)/CW (Vζ) to that of

NW1(V1,ζn)/CW1(V1,ζn), whence the last statement of the lemma. ���

Note that any element of Wφ is conjugate to an element of the form

(1, . . . , 1, w1)φ1 so the form of w in the statement of Lemma 2.12 covers all

the types of maximal tori.

Remark 2.13. If the generalized degrees of W1φ1 are (di, εi)i those of Wφ

are (di, ηi,j) where ηi,j for j ∈ {1, . . . , n} runs over the n-th roots of εi. It

follows that nΦ can be defined in terms of Wφ as it is also the number of

(di, ηi,j) such that ζdi = ηi,j , where ζ is any root of Φ(xn).
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Remark 2.14. For Φ ∈ P(G), a Sylow Φ-subtorus of G is a “power” of a

subtorus S0 such that |SF
0 | = Φ(q). If G is quasi-simple, such a subtorus S0

is F -indecomposable (since then the polynomial Φ is q-cyclotomic). But this

is no longer true for a descent of scalars. First, a cyclotomic polynomial in

xn decomposes in several cyclotomic polynomials according to the formula

Φd(x
n) =

∏

{µ|n,n
µ

prime to d} Φµd(x) (see [3, Appendice 2]). But there could

be further decompositions: for instance, the characteristic polynomial of F ∗

on a Coxeter torus of a semisimple group G of type B2 over F2 is x2 + 4,

which is Z-irreducible. But on a descent of scalars G×G, the characteristic

polynomial of F ∗ on a lift of scalars of this torus is x4+4 which is no longer

Z-irreducible: x4 + 4 = (x2 + 2x + 2)(x2 − 2x + 2), so the torus seen inside

the descent of scalars is no longer F -indecomposable.

We could have decomposed |GF | into a product of q-cyclotomic polyno-

mials corresponding to F -indecomposable tori, but in the case of descent of

scalars it was convenient to use larger tori.

Remark 2.15. An arbitrary semisimple reductive group is of the form G =

G1 . . .Gk, an almost direct product of descents of scalars of quasi-simple

groups Gi, corresponding to the orbits of F on the connected components of

the Dynkin diagram of G. Then we have |GF | = |GF
1 | · · · |GF

k | by Lemma

2.4, and similarly, if S is an F -stable torus of G, and Si = S ∩ Gi, then

|SF | = |SF
1 | . . . |SF

k |. This can be used to give a global decomposition of

|GF |, but the polynomials P in one factor could divide those in another.

For instance we could have Φ′
2,4 for a factor of G of type 2B2 and Φ8 for

another factor of type B2. Because of this it is cumbersome to give a global

statement.

From now on we fix (G, F ) as in Proposition 2.11, which determines

q, n, and η minimal such that qnη ∈ Z. This allows in the next definition to

omit the mention of G and F from the notation d(ℓ).

Definition 2.16. Let ℓ be a prime number different from p. In the context

of Proposition 2.11 we define d(ℓ) as the order of qnη (mod ℓ) ( (mod 4) if

ℓ = 2).

In particular ℓ|Φd(ℓ)(q
nη).
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The next proposition extends some of the Sylow theorems of [3], and

introduces a complex reflection group WΦ attached to each Φ in the set P
of Proposition 2.10.

Proposition 2.17. Under the assumptions of Proposition 2.11, let T be an

F -stable maximal torus of G in an F -stable Borel subgroup, and let Wφ ⊂
GL(X(T)) be the reflection coset associated to (G, F ). Then for each Φ ∈ P:

(1) If ζ is a root of Φ(xn) and w is as in Proposition 2.9(2), a maximal torus

of G of type w with respect to T contains a unique Sylow Φ-subtorus S.

For ζ, w as in (1) let WΦ = NW (Vζ)/CW (Vζ) where Vζ is the ζ-eigenspace

of wφ on V = X(T)⊗ C.

(2) For S as in (1) we have NGF (S)/CGF (S) = NG(S)/CG(S) ≃ WΦ, and

WΦ can be identified to a subgroup of GL(X(S)).

(3) The Sylow Φ-tori of G are GF -conjugate.

(4) Let ℓ 6= p be a prime number, and assume that Φ divides Φd(ℓ) (see

Definition 2.16). Then unless ℓ = 2 and (G1, F1) is of type 2G2, any

Sylow ℓ-subgroup of WΦ acts faithfully on the subgroup of ℓ-elements SF
ℓ

of SF .

Proof. For (1) we consider a torus (T, wF ) of type w. Then a wF -stable

subtorus corresponds to the span of a subset of eigenspaces of wφ on V .

Since the polynomials Φ are prime to each other the polynomials Φ(xn) are

also, thus qζ is root of no other factor of the characteristic polynomial of wφ

than Φ(xn). Thus the S defined in Lemma 2.12, which we will denote S0, is

unique.

Let us show (2). Let (Tw, F,S) be conjugate to (T, wF,S0). Let L =

CG(S), which, as the centralizer of a torus, is a Levi subgroup. Then we

note that NG(S) ⊂ NG(L). It follows that we can find representatives of

NG(S) modulo L in NG(Tw) since for n ∈ NG(S) the torus nTw is another

maximal torus of L which is thus L-conjugate to Tw. We thus get that

NG(S)/L = NG(S,Tw)/(NG(Tw) ∩ L); transferring this to T and then to

W we get NG(S,Tw)/(NG(Tw) ∩ L) ≃ NW (S0)/CW (S0) where S0 is the

subtorus of T determined by Ker(P (wF ∗)) where P = Φ(xn/qn). The

action of F is transferred to the action of wφ on this quotient.
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That NW (S0) = NW (Vζ) and CW (S0) = CW (Vζ) was given in Lemma

2.12.

By Proposition 2.9(4) we see that the action of wφ on NW (S0)/CW (S0)

is trivial, thus also that of F on NG(S)/CG(S), thus NG(S)/CG(S) =

(NG(S)/CG(S))F = NG(S)F /CG(S)F = NGF (S)/CGF (S), the second

equality since L = CG(S) is connected. Finally, the last part of (2) re-

sults from the fact that the representation of WΦ on X(S0), extended to

X(S0) ⊗ C has as summand the representation of WΦ on Vζ , which is the

reflection representation, thus faithful.

(3) is a direct translation of Proposition 2.9(3): when brought to subtori

of T corresponding to eigenspaces of wφ (resp. w′φ) the GF -conjugacy of

two Sylow Φ-subtori corresponds to the W -conjugacy of the corresponding

eigenspaces.

For (4) we first remark that we can reduce to the case where G is quasi-

simple, using Lemma 2.12. Thus either q ∈ Z or GF is a Ree or a Suzuki

group. Let δ be the order of the coset Wφ, that is the smallest integer such

that (Wφ)δ = W . We have δ ∈ {1, 2, 3}. We first show the

Lemma 2.18. If G is quasi-simple and we are in one of the cases:

(1) q ∈ Z and δ ∈ {1, 2}.
(2) q ∈ Z, δ = 3 and d is prime to 3.

(3) q is an odd power of
√
2 and ℓ = 3.

then WΦ acts faithfully on SF
ℓ .

Proof. On X(T) ⊗ Q(q−1) we have wF ∗ = qwφ. The characteristic poly-

nomial Q of wF ∗ on X(S) is qnΦ degΦΦ(x/q)nΦ ; as wF ∗ is semisimple, the

minimal polynomial of wF ∗ is P = qdeg ΦΦ(x/q). We can identify X(S) with

Ker(P (qwφ)) on X(T). As in the proof of Proposition 2.8, if X = X(S)

we can make X ′ = X ⊗ Z[q−1] an A-module where A = Z[x, q−η]/P . Un-

der the assumptions of the lemma A is a Dedekind ring. This results from

the proof of Proposition 2.8(1) when q ∈ Z. In the remaining case (3) of

Lemma 2.18, η = 2 and the order of q2 (mod 3) is 2, thus Φ = x2 + 1 and

P = x2 + q2; we have A = Z[x, q−2]/P ≃ Z[1/2,
√
−2] which is integrally

closed (thus Dedekind) since localized of Z[
√
−2] which is integrally closed.

As an A-module of rank nΦ, the module X ′ is a sum of projective rank 1
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submodules thus S is a product of nΦ copies of a wF -indecomposable torus.

By Proposition 2.17(2) we can identify WΦ to a subgroup of GL(X). With

the notations of Proposition 2.8, since the assumption of Proposition 2.8(1)

is satisfied, X̄ := X/(wF ∗ − 1)X ≃ Irr(SwF ) is isomorphic to (Z/Φ(q))nΦ .

The representation of WΦ on X reduces to X̄ . We will show it is faithful on

X̄/ℓX̄ (or X̄/4X̄ when ℓ = 2).

If q ∈ Z and ℓ = 2 then d ∈ {1, 2} and we can apply Proposition 2.8(2)

taking m = 4. We get that X̄/4X̄ ≃ Ker(wF ∗ − 1 | X/4X). We have as

observed in the proof of Proposition 2.8 that Ker(wF ∗−1) = X/4X and the

representation of WΦ on X̄/4X̄ , which is a quotient of Irr(SwF
ℓ ), is faithful

by Lemma 4.3.

If q ∈ Z and ℓ 6= 2 then d is prime to ℓ; and in case (3) of Lemma

2.18 η = 2, ℓ = 3 thus d = 2 and ℓ is prime to dη. In both cases we can

apply Proposition 2.8(2) with m = ℓ to get that X̄/ℓX̄ ≃ Ker(wF ∗ − 1 |
X/ℓX). We know by Lemma 4.3 that the representation of WΦ on X/ℓX is

faithful and we would like to conclude that it is faithful on the submodule

Ker(wF ∗−1). We use the element v given by Proposition 2.9(5): it preserves

the kernel of Φ(wφ) thus induces an element of GL(X) which defines an

automorphism σ of WΦ which sends wφ to (wφ)a, so it remains true after

reduction (mod ℓ) that σ sends wφ to (wφ)a, thus permutes the eigenspaces

of wF ∗ on X/ℓX: since d is the order of q (mod ℓ), all the primitive d-th

roots of unity live in Fℓ and the eigenvalues of wF ∗ are the product of one

primitive d-th root of unity, which is q, by the other primitive d-th roots

of unity so are of the form q1−a where a runs over (Z/d)×. And under the

assumption (Wφ)a = Wφ of Proposition 2.9(5) we can find v thus σ which

sends the q1−a-eigenspace of wF ∗ to the q1−1 = 1-eigenspace.

If every a prime to d has a representative in 1 + δZ we can satisfy

(Wφ)a = Wφ for such a thus every eigenspace is isomorphic as a WΦ-module

to Ker(wF ∗−1). Then WΦ is faithful on the whole X/ℓX if and only if it is

faithful on Ker(wF ∗ − 1), thus we conclude. If a ≡ 1 (mod gcd(d, δ)) then

by Bezout’s theorem there exist integers α, β such that a = 1+αd+βδ, and

then a− αd ∈ 1 + δZ is a representative of a.

If δ = 1 or δ = 2 then every a prime to d is ≡ 1 (mod gcd(d, δ)) and we

conclude. We conclude similarly if δ = 3 and d is prime to 3, or in case (3)

of Lemma 2.18 since in this case d = 2. ���



✐

“BN13N23” — 2018/1/30 — 14:57 — page 241 — #15
✐

✐

✐

✐

✐

2018] THE SYLOW SUBGROUPS OF A FINITE REDUCTIVE GROUP 241

When q ∈ Z the only case not covered by the lemma is 3D4 and d

divisible by 3, that is d ∈ {3, 6, 12}. But in this case ℓ > 3, since d is the

order of q (mod ℓ), thus |W | is prime to ℓ and a fortiori the Sylow ℓ-subgroup

of WΦ is trivial.

For the Ree and Suzuki groups we do not have to consider 2B2 since W

is a 2-group and ℓ 6= p, and the groups 2G2 since only the prime ℓ = 2 divides

|W | and is different from p, and this case is excluded in the proposition.

For the groups 2F4 the only prime ℓ 6= p such that ℓ||W | is ℓ = 3 and

we are in case (3) of the lemma. ���

The Ree group 2G2 with ℓ = 2 is a genuine counterexample since the

Sylow 2-subgroups of 2G2(q) are isomorphic to (Z/2)3.

3. The Structure of the Sylow ℓ-subgroups

Definition 3.1. Let G, F,G1,P and n be as in Proposition 2.11 and let

ℓ 6= p be a prime number. We define D(ℓ) as the set of integers d such that

for some Φ ∈ P dividing Φd(x
η) we have ℓ|Φ(qn), where η is as in Definition

2.16.

The following proposition is [5, Théorème 1] when η = 1; we give here a

shorter proof. Since [5] was written, Malle ([7, 5.14 and 5.19]) has published

a proof of (2) below — thus implicitly of (1) also— when η = 1 (giving more,

see Theorem 3.3).

Theorem 3.2. Assume in the situation of Definition 3.1 that D(ℓ) 6= ∅, or
equivalently that ℓ||GF |. Then

(1) d(ℓ) ∈ D(ℓ).

(2) There exists a unique Φ ∈ P such that ℓ|Φ(qn) and Φ divides Φd(ℓ)(x
η).

If S is a Sylow Φ-torus then NG(S) contains a Sylow ℓ-subgroup of GF

which is an extension of (Z0CG(S))Fℓ by a Sylow ℓ-subgroup of WΦ.

(3) The Sylow ℓ-subgroups of GF are abelian if and only if |D(ℓ)| = 1 (which

is equivalent to WΦ being an ℓ′-group), apart from the exception where

(G1, F1) is of type
2G2 and ℓ = 2 in which case |D(ℓ)| = 2 and |WΦ| = 6

but the 2-Sylow is abelian, isomorphic to (Z/2)3.

Further, if S is as in (2), then (Z0CG(S))Fℓ = SF
ℓ except if:
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• ℓ = 3 and G1 of type 3D4.

• ℓ = 2, d = 1 and for some odd degree εi = −1. Equivalently G1 is non-

split and has an odd reflection degree, that is, is one of 2An,
2D2n+1 or

2E6.

• ℓ = 2, d = 2 and for some odd degree εi = 1; equivalently G1 is split and

has an odd reflection degree, that is, is one of An(n > 1), D2n+1 or E6.

In the above exceptions, Z0CG(S) = CG(S) is a maximal torus of G.

Proof. Let us note that to prove (2) when we are not in an exception, that

is the stronger statement that a Sylow ℓ-subgroup is in an extension of SF

by a Sylow ℓ-subgroup of WΦ, it is enough to prove that

vℓ(|GF |) = vℓ(|SF |) + vℓ(|WΦ|) (∗)

where vℓ denotes the ℓ-adic valuation, and in the exceptions, if we have

proved that Z0CG(S) = CG(S) it is enough to show

vℓ(|GF |) = vℓ(|CG(S)F |) + vℓ(|WΦ|) (∗∗)

Note also that by the definition of d(ℓ) and D(ℓ) in Proposition 2.11,

assertion (1) as well as formulae (∗) and (∗∗) are equivalent in G and G1,

that is we may assume G quasi-simple to prove them which we do now.

Also, in view of (2) and Proposition 2.17(4), (3) reduces to proving:

(3’) |D(ℓ)| = 1 is equivalent to WΦ being an ℓ′-group.

We first look at the case of a Ree or Suzuki group, where η = 2.

Let us prove (1) first. By Lemma 4.2 if ℓ divides |GF | then there is

an element of D(ℓ) of the form d(ℓ)ℓb with b ≥ 0. By inspecting the order

formula for |GF | given in the proof of Proposition 2.10 the elements of

D(ℓ) have all their prime factors in {2, 3}, so b > 0 implies ℓ ∈ {2, 3} thus

d(ℓ) ∈ {1, 2}; inspecting again the formula, we see that then d(ℓ) in D(ℓ)

and that |D(ℓ)| = 1 unless ℓ ∈ {2, 3}.
To prove (2) for ℓ /∈ {2, 3}, we observe there is a single Φ ∈ P such that

ℓ|Φ(q) since the two numbers Φ′
2,4(q),Φ

′′
2,4(q) are prime to each other, and

the same observation applies to Φ′
2,6(q),Φ

′′
2,6(q) and Φ′

2,12(q),Φ
′′
2,12(q). Thus
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for ℓ /∈ {2, 3} assertions (3’) and (∗) are obvious since |GF |ℓ = |SF |ℓ and

ℓ 6 ||W |.
Let us prove (∗) for ℓ ∈ {2, 3}; since ℓ 6= p and the elements of D(ℓ)

have only 2 as prime factor in the case 2B2, we have just to consider:

• ℓ = 3 for 2F4: we have d(3) = 2, WΦ2,2 = G12 of order 48; the only factor

Φ(q) with a value divisible by 3 apart from |SF | = Φ2,2(q)
2 is Φ2,6(q)

and v3(Φ2,6(q)) = 1 = v3(|G12|) which proves this case.

• ℓ = 2 for 2G2: we have d(2) = 2 and |WΦ2,2 | = 6; the only factor Φ(q)

with an even value apart from |SF | = Φ2,2(q) is Φ2,1(q) and v2(Φ2,1(q)) =

1 = v2(|WΦ|) which proves this case.

We have seen (3’) along the way.

Now we look at the other quasi-simple groups thus η = 1. We notice

generally that, assuming we have proved (1) then if |D(ℓ)| = 1 assertion (2)

is trivial since a Sylow ℓ-subgroup is then in S, and (3’) reduces to checking

that WΦ is an ℓ′-group.

We consider separately 3D4 where |3D4(q)| = q12(Φ2
1Φ

2
2Φ

2
3Φ

2
6Φ12)(q).

Again, since the only prime factors of elements of D(ℓ) are {2, 3}, we see

that d(ℓ) ∈ D(ℓ) except possibly if ℓ ∈ {2, 3}; but in that case d(ℓ) ∈ {1, 2}
and there is a factor Φd(ℓ)(q), whence (1). Since |W | = 3 · 26 assertion (3’)

is proved when D(ℓ) = 1. It remains to prove (2) when ℓ ∈ {2, 3}. In both

cases WΦd(ℓ)
= W (G2) and by Lemma 4.2 vℓ(|GF |/|SF |) = 2. If ℓ = 2

then 2 = vℓ(|W (G2)|) which proves (∗). If ℓ = 3 a Sylow Φ-subtorus S is

in a torus Tw = CG(S) where w = 1 if d = 1 (resp. w = w0 if d = 2).

We have |TF
1 | = Φ1(q)

2Φ3(q) (resp. |TF
w0
| = Φ2(q)

2Φ6(q)) which has same

3-valuation as |GF |/|WΦ| which proves (∗∗).
In the remaining cases εi = ±1 for all i. Let us set ζd = e2iπ/d. We have

Φ = Φd(ℓ) and vℓ(|SF |) = |a(ζd(ℓ)))|vℓ(Φd(ℓ)(q)).

We first treat the case ℓ odd. We have a(ζd) = {di | ζdid = εi} and

|WΦ| =
∏

di∈a(ζd(ℓ))
di. By Lemma 4.2, a factor Φe(q) of |GF | can contribute

to the ℓ-valuation only if e is of the form d(ℓ)ℓb for some b ≥ 0. Further

such a factor appears if and only if a(ζe) 6= ∅, that is for some i we have

ζdi
d(ℓ)ℓb

= εi. Since ℓ is odd raising this equality to the power ℓb gives ζdid(ℓ) = εi

thus di ∈ a(ζd(ℓ)) and in particular d(ℓ) ∈ D(ℓ). And ζdi
d(ℓ)ℓb

= εi implies that

ℓb divides di. Thus only the di in a(ζd(ℓ)) contribute to vℓ(|GF |) and each
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of them contributes vℓ(Φd(ℓ)(q)) + vℓ(Φd(ℓ)ℓ(q)) + . . .+ vℓ(Φd(ℓ)ℓvℓ(di)(q)). By

Lemma 4.2 this is vℓ(Φd(ℓ)(q)) + vℓ(di). Summing over di ∈ a(ζd(ℓ)) proves

(∗).
It remains the case ℓ = 2 where we proceed similarly. We have d(2) ∈

{1, 2}. If d(2) = 1 then a(1) = {di | εi = 1}. Thus the condition ζdi
2b

= εi

is still equivalent to 2b|di; but there could be some more solutions of this

equation than elements of a(1) when b = 1: any odd di such that εi = −1

brings an additional factor 1 = v2(Φ2(q)). If d(2) = 2 then a(−1) = {di |
εi = (−1)di}. The contribution of the even di can be worked out as before;

but this time the odd di where εi = 1 bring additional factors v2(Φ1(q)).

In the exceptions in each case CG(S) is a maximal torus of type 1 or w0;

looking at the orders of these tori, they contain enough extra Φ1 or Φ2 factors

(which correspond to the eigenvalues 1 or −1 of φ or w0φ) to compensate

the discrepancy.

Let us show now (3’), which reduces to proving that |D(ℓ)| > 1 implies

vℓ(|WΦ|) > 0. Thus we assume |D(ℓ)| > 1. We first do the case ℓ = 2;

then d(ℓ) ∈ {1, 2} from which it follows, since the 1 and −1-eigenspaces are

defined over the reals, that WΦ is a Coxeter group, whose order is always

even. We consider finally ℓ odd; then D(ℓ) ∋ d(ℓ) and d(ℓ)ℓa for some a > 0.

But we have seen above that there exists a factor Φd(ℓ)ℓa(q) only if ℓa|di for
some di in a(ζd(ℓ)). ���

We remark that if ℓ divides only one Φd(q), a Sylow ℓ-subgroup S lies in

a single Sylow Φ-torus S (the intersection of two tori has lower dimension so

cannot have same order polynomial). It follows that NGF (S) = NGF (S) and

CGF (S) = CGF (S). This observation is a start for describing the ℓ-Frobenius

category of GF in terms of the category of ζd-eigenspaces of WΦd
.

In general, one can deduce the following unicity theorem from the work

of Cabanes, Enguehard and Malle.

Theorem 3.3. Consider G, F, n,G1, q as in Proposition 2.11 with qn ∈ Z

and let Φ as defined in Theorem 3.2, (2). Assume that we are not in one of

the following cases:

• ℓ = 3, G1 simply connected of type A2,
2A2 or G2.

• ℓ = 2, G1 simply connected of type Cn, n ≥ 1.
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Let Q be a Sylow ℓ-subgroup of GF . There is a unique Sylow Φ-subtorus S

of G such that Q ⊆ NG(S).

Proof. In the context of Theorem 3.2(2), let Q be a Sylow ℓ-subgroup of

GF contained in NG(S); then according to [4], SF
ℓ is often characteristic in

Q (for example when l ≥ 5), thus in these cases NGF (Q) ⊆ NG(SF
ℓ ). Using

inductively that property and inspecting small cases, G. Malle has proved

the inclusion

NGF (Q) ⊆ NG(S) (3.1)

for all quasi-simple groups G short of the cases excluded in Theorem 3.3, see

[7, Theorems 5.14 and 5.19]. Here S is a Sylow Φd(ℓ)-subtorus of (G, F ) as

defined in Definition 2.16 with η = 1 (note that NGF (Q) ⊆ NG(S) implies

Q ⊆ NG(S)).

We first verify that the last inclusion holds more generally in a ”descent

of scalars”. With hypotheses and notations of Proposition 2.11 and Lemma

2.12 assume qn ∈ Z. If e = d(ℓ) is the order of qn modulo ℓ, take Φ = Φe ∈ P,

defining S = SΦ and S1. There is a morphism from G onto G1, sending

S to S1, with restriction an isomorphism from GF to GF
1 . Then a Sylow

ℓ-subgroup Q1 of GF
1 contained in NG1(S1) is the isomorphic image of a

Sylow ℓ-subgroup Q of GF contained in NG(S). The inclusion (3.1) written

with (G1, F1, Q1,S1) instead of (G, F,Q,S) implies (3.1) in (G, F ).

From (3.1) the unicity of S, given Q, follows:

Lemma 3.4. Let Φ ∈ P, let S be a Sylow Φ-subtorus of (G, F ) and Q a

Sylow ℓ-subgroup of GF . If NGF (Q) ⊆ NG(S), then S is the unique Sylow

Φ-torus of (G, F ) such that Q ⊆ NG(S).

Proof. Assume Q ⊆ NG(S′) for some Sylow Φ-torus S′ of (G, F ). By

Proposition 2.17 there exists g ∈ GF such that S = (S′)g, hence Qg ⊆
NG(S). By Sylow’s theorem in NG(S)F , Q = Qgh for some h ∈ NG(S)F

hence gh ∈ NG(S) by our hypothesis. ���

4. Appendix

We gather here arithmetical lemmas used above.



✐

“BN13N23” — 2018/1/30 — 14:57 — page 246 — #20
✐

✐

✐

✐

✐

246 MICHEL ENGUEHARD AND JEAN MICHEL [June

Lemma 4.1. Let x, f, ℓ ∈ N where ℓ is prime, and assume x ≡ 1 (mod ℓ)

(resp. (mod 4) if ℓ = 2). Then vℓ(
xf−1
x−1 ) = vℓ(f).

Proof. From xf1f2−1
x−1 = xf1f2−1

xf2−1
xf2−1
x−1 we see that it is enough to show the

lemma when f is prime. We have xf−1
x−1 = f +

∑i=f
i=2(x− 1)i−1

(

f
i

)

. Let S be

this last sum; we have S ≡ f (mod ℓ), since x − 1 ≡ 0 (mod ℓ), thus S is

prime to ℓ when f 6= ℓ which shows the lemma in this case. When f = ℓ then

all the terms of S but the first one and possibly the last one are divisible

by ℓ2 since
(ℓ
i

)

is divisible by ℓ when 2 ≤ i < ℓ; the last term is divisible

by ℓ2 when ℓ − 1 ≥ 2 which fails only for f = ℓ = 2; but when ℓ = 2 we

have arranged that vℓ(x − 1) ≥ 2 and this time 2(f − 1) ≥ 1; thus S ≡ f

(mod ℓ)2, whence the lemma. ���

The following lemma is in [7, 5.2]; a short elementary proof results

immediately from Lemma 4.1.

Lemma 4.2. Let q, ℓ ∈ N where ℓ is prime. Let d be the order of q (mod ℓ)

(or (mod 4) if ℓ = 2). Then ℓ divides Φe(q) if and only if e is of the form

dℓb with b ∈ N (or additionally b = −1 when ℓ = d = 2), and vℓ(Φdℓb(q)) = 1

if b 6= 0.

The following lemma is in [8]; we give the proof since it is very short

and the original German proof may be less accessible.

Lemma 4.3. Let m ∈ N,m > 2. Then the kernel of the reduction map

GL(Zn) → GL((Z/m)n) is torsion-free.

Note that the bound m > 2 is sharp since −Id ≡ Id (mod 2).

Proof. Let w ∈ GL(Zn) be of finite order, w 6= Id and assume its reduction

v = Id. We will derive a contradiction.

Possibly replacing w by a power, we may assume that w is of prime

order p.

Also GL(Zn/m) =
∏

iGL(Zn/pi) where m =
∏

i pi is the decomposition

of m into prime powers, thus we may assume that m is a prime power.

Since w is of order p, the polynomial Φp(x) is a factor of the character-

istic polynomial of w. The characteristic polynomial of v is the reduction
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(mod m) of that of w, thus we must have Φp(x) (mod m) ≡ (x − 1)p−1; in

particular
(p−1

1

)

≡ −1 (mod m) thus m|p which implies m = p.

Write now w = Id + xma where x (mod m) 6≡ 0 and a ∈ N. Then the

equation wm = Id gives
∑m

i=1

(

i
m

)

ximai = 0, which after dividing by ma+1

becomes x = −∑m
i=2

( i
m

)

xima(i−1)−1 where all coefficients on the right-hand

side are divisible by m (since m ≥ 3), which contradicts x (mod m) 6≡ 0. ���
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