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Abstract

We give some discussions to the relations between canonical left cells and the lowest

two-sided cell of an affine Weyl group. In particular, we use the relations to construct

irreducible modules attached to the lowest two-sided cell and some one dimensional rep-

resentations of an affine Hecke algebra.

Canonical left cells of an affine Weyl group are interesting in understand-

ing cells in affine Weyl groups and have nice relations with the structure

and representations of algebraic groups. However, it is not easy to describe

canonical left cells. In this paper we give some discussions to the relations

between canonical left cells and the lowest two-sided cell of an affine Weyl

group. In particular, we use the relations to construct irreducible mod-

ules attached to the lowest two-sided cell (see Theorem4.1) and some one

dimensional representations of an affine Hecke algebra (see Theorem 3.5).

For convenience we work with an extend affine Weyl group. This work was

partially motivated by [1].
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1. Canonical Left Cells

1.1. Let R be an irreducible root system and P the corresponding weight

lattice. The Weyl groupW0 acts on P naturally and the semi-direct product

W = W0 ⋉ P is an extended affine Weyl group, which contains the affine

Weyl group Wa = W0 ⋉ ZR. Let S be the set of simple reflections of Wa.

The partial order ≤ and the length function l on W are well defined. The

operation on P will be written in multiplication.

For w ∈W , set L(w) = {s ∈ S | sw ≤ w} and R(w) = {s ∈ S |ws ≤ w}.

Let s0 be the unique simple reflection of Wa out of W0. Define Y0 = {w ∈

W |R(w) ⊆ {s0} }. Then Y0 ∩ Ω is a left cell for any two-sided cell Ω of W ,

called a canonical left cell.

In general it is not easy to describe a canonical left cell. However, it

is easy to describe the set Y0. Let w0 be the longest element of W0. The

set of anti-dominant weights in P is defined to be P− = {x ∈ P | l(xw0) =

l(w0) + l(x)} and the set of dominant weights is P+ = {x ∈ P | l(w0x) =

l(w0) + l(x)}.

Proposition 1.2. Y0 = {wx |w ∈W0, x ∈ P− and R(w) ⊆ L(x)}.

Proof. Let u ∈ W . Then there exist unique w, v ∈ W0 and x ∈ P− such

that R(w) ⊆ L(x) and u = wxv. Moreover, we have l(u) = l(x)+ l(v)− l(w).

The proposition follows.

1.3. It would be interesting to see when two elements in Y0 are in a left

cell. Let ρ be the product of all fundamental dominant weights. Then the

set {wxρ−1 |w ∈W0, x ∈ P− and R(w) ⊆ L(x)} is the canonical left cell in

the lowest two-sided cell c0 of W . In general, for any x ∈ P− there exists a

positive integer a (depending on x) such that xb and xa are in a left cell if

b ≥ a (see [8, Lemma 3.2]). It seems that the number a is small, in many

cases, it is among 1,2,3.

Let S0 = S ∩W0 and denote by Γ0 the left cell {w ∈ W |R(w) = S0},

which is in the lowest two-sided cell c0 of W . For x ∈ P , denote by nx (resp.

mx) the unique shortest element in the coset xW0 (resp. the double coset

W0xW0). The map x → nx defines a one-to-one correspondence from P to

Y0, and the map nx → nxw0 defines a one-to-one correspondence from Y0
to Γ0. Also the map x → mx defines a one-to-one correspondence between
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P+ and Y0 ∩ Y
−1
0 . The sets Y0 and Γ0 produce naturally two modules of

an affine Hecke algebra of (W,S). In next section we will see that the two

modules are essentially the same.

2. Cell Modules of Affine Hecke Algebras

2.1. Let H be the Hecke algebra of (W,S) over a field k with parameter

q. Assume that k contains square roots of q. Let {Tw}w∈W be its standard

basis. For any w in W , let

Cw = q−
l(w)
2

∑

y≤w

Py,w(q)Ty,

and

C ′
w = q

l(w)
2

∑

y≤w

(−1)l(w)−l(y)q−l(y)Py,w(q
−1)Ty,

where Py,w are the Kazhdan-Lusztig polynomials. Then the elements Cw,

w ∈ W , form a basis of H, and the elements C ′
w, w ∈W , form a basis of H

as well, see [2].

For any x ∈ P there is a well defined element θx = q−
l(y)
2 Tyq

l(z)
2 T−1

z .

where y, z ∈ P+ such that x = yz−1. Then θxθy = θyθx for any x, y ∈ P and

the elements Twθx (resp. θxTw), w ∈W0, x ∈ P , form a basis of H. See [4].

The group algebra k[P ] is isomorphic to the subalgebra Θ ofH generated

by all θx, x ∈ P . Lusztig defined several H-module structures on k[P ], see

[5, Section 7]. They are actually isomorphic to the modules provided by

the left cell Γ0. Let M (resp. M ′) be the subspace of H spanned by all

Cw, w ∈ Γ0 (resp. C ′
w, w ∈ Γ0). Then M and M ′ are left ideals of H and

generated by C = Cw0 and C
′ = C ′

w0
respectively. The elements θxC, x ∈ P ,

form a basis of M and the elements θxC
′, x ∈ P , form a basis of M ′.

Let I (resp. I ′) be the subspace of H spanned by all Cw, w ∈ W − Y0

(resp. C ′
w, w ∈W − Y0). Then I and I ′ are left ideals of H. Let N = H/I

and N ′ = H/I ′. Essentially the following result is due to Arkhipov and

Bezrukavnikov (see [1, 1.1.1]).

Lemma 2.2. As H-modules N is isomorphic to M ′, and N ′ is isomorphic

to M .
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Proof. Consider the surjective homomorphism H → M ′, h → hC ′. It is

easy to check that the kernel is I. So N is isomorphic to M ′. Similarly

the surjective homomorphism H → M , h → hC induces an isomorphism

N ′ →M of H-module. The lemma is proved. ���

2.3. The geometric explanation of the isomorphism in the above lemma is

that Thom isomorphism for a certain equivariant K-group of the cotangent

bundle of flag variety is compatible with certain actions of the affine Hecke

algebra H, see [5, Section 7].

Lemma 2.2 seems helpful in understanding the structure of H-modules

M and M ′, and may be useful to understand canonical left cells. A natural

question is to consider the submodule ofM ′ (resp. M) generated by all CwC
′

(resp. C ′
wC), w ∈ c0 ∩ Y0. Modulo a central character of H, we can get a

finite dimensional quotient algebra of H. In next two sections we will give

some discussion to the images in such quotient algebras of the submodules.

We will show that the images in such a quotient algebra is either irreducible

H-module or zero when k is algebraically closed (Theorem 4.1).

3. A Realization of Some One Dimensional Representations

In this section we construct some one dimensional representations of the

affine Hecke algebra H through certain quotient algebras of H (see Theorem

3.5).

3.1. From now on we assume that k is algebraically closed. Recall that Θ

is the subalgebra of H generated by all θx, x ∈ P . Let the Weyl group W0

act on Θ by w(θx) = θw(x).

We shall need several formulas in H. Let x ∈ P , the Macdonald formula

says (see [6, Theorem 2.22])

CθxC = q−
l(w0)

2

∑

w∈W0

w(θx
∏

α∈R+

1− qθα
1− θα

)C. (1)

Let ∆ be the set of simple roots of R and denote xα the fundamental

dominant weight corresponding to a simple root α. Recall that ρ = x∆ is
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the product of all fundamental dominant weights. Using [4, Corollary 7.8,

Lemma 7.4 (iii)] we get

C ′θρ−1C = q−
ν
2C ′

∑

I⊆R+

(−q)|I|θρ−1θαI
, (2)

C ′θρC = q
ν
2C ′

∑

I⊆R+

(−q)−|I|θρθα−1
I
, (3)

where ν = l(w0) = |R+|, αI is the sum of all roots in I and |I| is the

cardinality of I.

There is a unique involutive anti-automorphism h→ h̃ of the k-algebra

H such that T̃r = Tr (r ∈ S0), θ̃x = θx (x ∈ P ) [3, 2.13(c)]. Note that

C̃ = C and C̃ ′ = C ′. Applying this anti-automorphism to the formulas (2)

and (3) we get

Cθρ−1C ′ = q−
ν
2

∑

I⊆R+

(−q)|I|θρ−1θαI
C ′, (4)

CθρC
′ = q

ν
2

∑

I⊆R+

(−q)−|I|θρθα−1
I
C ′. (5)

(For a K-theoretic understanding of formula (4) see [13, 2.6], note that the

C ′ here is the C in loc.cit.)

3.2. The center of H

We have

(a) The center Z(H) of H consists of W0-invariant elements in Θ, i.e. Z(H)

= ΘW0 (see [4]).

Therefore the center Z(H) of H is isomorphic to k⊗ZRG, where G is a

simply connected simple algebraic group over k with root system R and RG

is the representation ring of G.

For w ∈W0 define

ew = w(
∏

α∈∆

w(α)∈R−

xα).
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(Recall that here xα is the fundamental dominant weight corresponding to

α ∈ ∆.) Then (see [7])

(b) Θ is a free Z(H)-module with a basis {θew |w ∈W0}.

Hence,

(c) for any x ∈ P , the elements θxθew , w ∈W0, form a Z(H)-basis of Θ.

(d) For A,B ∈ Θ, define

(A,B) = (−1)νθρ
∏

α∈R+

(1− θα)
−1

∑

w∈W0

(−1)l(w)w(ABθρ) ∈ Z(H).

By [3, p.163] there exist θ′u ∈ Θ (u ∈W0) such that (θew , θ
′
u) = δw,u and

the elements θ′u form a Z(H)-basis of Θ.

3.3. Let T be a maximal torus of G and identify P with the character group

Hom(T, k∗) of T . Then Θ is isomorphic to the group algebra k[P ] of P . For

t ∈ T , we have a k-algebra homomorphism φt : Θ → k defined by θx → x(t)

for all x ∈ P . It is known that the map t → ϕt defines a bijection between

T and the set of k-algebra homomorphisms from Θ to k.

Now the center Z(H) of H is a free Θ-module of rank W0. Therefore

every k-algebra homomorphisms from Z(H) to k is the restriction φt|Z(H)

of some algebra homomorphism φt : Θ → k. Moreover, φt|Z(H) = φs|Z(H) if

and only if s and t are conjugate by some element ofW0, since Z(H) = ΘW0 .

Thus the set of k-algebra homomorphisms from Z(H) to k is in one-to-one

correspondence with the set of semisimple classes of G.

For t ∈ T , let t̄ be the semisimple class of G containing t and let φt̄ =

φt|Z(H) : Z(H) → k be the corresponding homomorphism. Then let Zt

be the two-sided ideal of H generated by all z − φt(z), z ∈ Z(H). Define

Ht = H/Zt. We have dimHt = |W0|
2.

For each simple H-module L, there exist some t in T such that Z(H)

acts on L through the homomorphism φt. So to study simple modules of H

it is enough to study simple modules of the quotient algebras Ht for t ∈ T .

We shall use the same notations C ′
w,Dw, C,C

′, θx, . . . for their images in Ht.

Theorem 3.4. Let t ∈ T . The following statements are equivalent.

(a) CHtC = 0. (Recall that C = Cw0 and C ′ = C ′
w0
.)
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(b) CHtC
′ = 0.

(c) C ′HtC = 0.

(d) C ′Ht−1C ′ = 0.

(e) For any simple Ht-module L we have CL = 0.

(f) For any simple Ht−1-module L we have C ′L = 0.

Proof. There is a unique involutive automorphism h→ h∗ of the k-algebra

H such that T ∗
r = −qT−1

r = q − 1 − Tr (r ∈ S0), θ
∗
x = θx−1 (x ∈ P )

[3, 2.13(d)]. Noting that C∗ = (−1)l(w0)C ′, we see that (a) and (d) are

equivalent, (e) and (f) are equivalent.

Using the involutive anti-automorphism h → h̃ of the k-algebra H de-

fined by T̃r = Tr (r ∈ S0), θ̃x = θx (x ∈ P ) [3, 2.13(c)] and noting that

C̃ = C and C̃ ′ = C ′, we see that (b) and (c) are equivalent.

Since the two-sided ideal Hc0 of H spanned by all Cw, w ∈ c0 is gener-

ated by C, using [11, 7.7] we know that (a) and (e) are equivalent.

Now we show that (a) and (b) are equivalent. Since TwC = CTw =

ql(w)C if w ∈W0, we see that CHC is spanned by CθxC. By formula (1) in

3.1, we have

CθxC = q−
l(w0)

2

∑

w∈W0

w(θx
∏

α∈R+

1− qθα
1− θα

)C.

So we have the following assertion.

(i) The condition CHtC = 0 is equivalent to

φt(
∑

w∈W0

w(θx
∏

α∈R+

1− qθα
1− θα

)) = 0, for all x ∈ P.

Using 3.2 (c) we know thatH is spanned by all Twzθρθeu, w, u ∈W0, z ∈

Z(H). Therefore we have the claim below.

(ii) The condition CHtC = 0 is equivalent to

φt(
∑

w∈W0

w(θρθeu
∏

α∈R+

1− qθα
1− θα

)) = 0, for all u ∈W0.
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Similar to [10, Lemma 2.10], we see that HC ′ is spanned by all TwzθIC
′,

w ∈ W0, z ∈ Z(H), I ⊆ ∆, where θI =
∏

α∈I θxα . Since TwC = CTw =

ql(w)C if w ∈ W0 and CθIC
′ = 0 if I 6= ∆, as a Z(H)-module, CHC ′ is

generated by CθρC
′.

Recall the formula (5) in 3.1:

CθρC
′ = q

ν
2

∑

I⊆R+

(−q)−|I|θρθα−1
I
C ′,

where ν = l(w0) = |R+|, αI is the sum of all roots in I and |I| is the

cardinality of I.

Let A = q
ν
2
∑

I⊆R+(−q)−|I|θρθα−1
I
. Note that

A = (−1)νq−
ν
2 θ−1

ρ

∏

α∈R+

(1− qθα).

Thus

(A, θeu) = (−1)νq−
ν
2

∑

w∈W0

w(θρeu
∏

α∈R+

1− qθα
1− θα

). (6)

Since A =
∑

u∈W0
(A, θeu)θ

′
u in H and θ′uC

′, u ∈ W0, are linearly indepen-

dent in HtC
′, we obtain the following equivalence condition.

(iii) The condition CHtC
′ = 0 is equivalent to

φt(
∑

w∈W0

w(θρeu
∏

α∈R+

1− qθα
1− θα

) = 0 for all u ∈W0.

Using (ii) and (iii) we see that (a) and (b) are equivalent. The theorem

is proved.

Theorem 3.5. Let t ∈ T be such that α(t) = q for all simple roots α of R.

Then

(a) CHtC
′ (resp. C ′HtC) is a two-sided ideal of Ht with dimension 1 if

∑

w∈W0
ql(w) 6= 0.

(b) CHtC
′ = 0 if

∑

w∈W0
ql(w) = 0.

Proof. We have seen that CHtC
′ is spanned by the image in Ht of CθρC

′.

To see it is a two-sided ideal of Ht it suffices to prove that the images in Ht



✐

“BN13N34” — 2018/1/30 — 14:52 — page 359 — #9
✐

✐

✐

✐

✐

2018] Canonical Left Cells and the Lowest Two-sided Cell 359

of θxCθρC
′ and CθρC

′θx for all x ∈ Θ are scalar multiples of the image of

CθρC
′ in Ht.

(i) If w is not the neutral element of W0, then there exists a positive root β

such that w(β) = α−1 for some simple root α. Thus w(1− qβ)(t) = 0.

Let A be as in the proof of Theorem 3.4. Then θxCθρC
′ = AθxC

′. Since

(Aθx, θeu) = (−1)νq−
ν
2

∑

w∈W0

w(θρxeu
∏

α∈R+

1− qθα
1− θα

),

using (i) we get

(Aθx, θeu)(t) = ρ(t)x(t)eu(t)
∏

a∈R+

1− q1+〈ρ,α∨〉

1− q〈ρ,α∨〉
,

if 1 − q〈ρ,α
∨〉 6= 0 for all positive roots α. We have (see for example [6,

Corollary 2.17])

∏

a∈R+

1− q1+〈ρ,α∨〉

1− q〈ρ,α
∨〉

=
∑

w∈W0

ql(w),

if 1 − q〈ρ,α
∨〉 6= 0 for all positive roots α. Now (Aθx, θeu) is in Z(H), so

(Aθx, θew)(t) is a regular function in q ∈ k∗. Thus we have

(Aθx, θeu)(t) = (−1)νq−
ν
2 ρ(t)x(t)eu(t)

∑

w∈W0

ql(w) (7)

for all q ∈ k∗. So the images in Ht of θxCθρC
′ for all x ∈ Θ are scalar

multiples of the image in Ht of CθρC
′, and CHtC

′ is a left ideal of Ht.

Using the involutions h → h∗ and h → h̃ of H several times we see that

CHtC
′ is a left ideal of Ht implies that it is also a right ideal of Ht.

The formula (7) also indicates that CHtC
′ = 0 if and only if

∑

w∈W0
ql(w)

= 0. The theorem is proved.

It is easy to check that TsCHtC
′ = qHtC

′ and CHtC
′Ts = −CHtC

′ for

all simple reflections s if α(t) = q for all simple roots α. So the ideals CHtC
′

and C ′HtC give natural realizations of some one dimensional representations

of Hq.
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4. Irreducible Modules Attached to the Lowest Two-Sided Cell

The main result of this section is the following.

Theorem 4.1. Let t ∈ T , then

(a) The element CθρC
′ in Ht generates an irreducible module Lt of H if it

is nonzero. Moreover, CLt 6= 0 in this case.

(b) The element C ′θρC in Ht generates an irreducible module L′
t of H if it

is nonzero. Moreover, C ′Lt 6= 0 in this case.

Proof. Let Jc0 be the based ring of c0. According to [9], Jc0 is isomorphic

to a |W0|×|W0| matrix ring over RG. Let Jc0 = C⊗Jc0 . Then up to isomor-

phism, irreducible Jc0-modules are naturally in one-to-one correspondence

with the semisimple classes of G. For the semisimple class containing t, let

Et be a corresponidng simple Jc0-module.

Let ϕ0 : H → Jc0 be Lusztig’s homomorphism defined through the basis

Cw, w ∈ W . Then Et is endowed with an H-module structure through the

homomorphism. Denote the H-module structure on Et by Et,ϕ0 . We have

(see for example the proof of Theorem 3.5 in [13]) the following assertion.

(i) Et,ϕ0 is isomorphic to HtC.

According to [11, 7.7] and [12, Lemma 2.5], HtC has a simple constituent

L such that CL 6= 0 if and only if CHtC 6= 0. In this case, L is the unique

simple constituent of HtC such that CL 6= 0 and L is also the unique simple

quotient module of HtC, i.e., the head of HtC.

By Theorem 3.4, CHtC 6= 0 is equivalent to CHtC
′ 6= 0. Now assume

that CHtC
′ 6= 0. By the proof of [12, Lemma 2.5], the set

Mt,0 = {h ∈ HtC |Cwh = 0, ∀w ∈ c0}

is the unique maximal submodule of HtC.

We have a natural H-module homomorphism: HtC → HtCθρC
′, h →

hθρC
′. Therefore, to prove that CθρC

′ in Ht generates an irreducible module

Lt of H it suffices to prove that

h ∈Mt,0 ⇐⇒ hθρC
′ = 0.
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Let Θt be the image of Θ in Ht. Then HtC consists of θC, θ ∈ Θt. Since

Θ is a free Z(H)-module with a basis {ew |w ∈ W0}, and for any w ∈ c0

there exists ξ, η ∈ Θ such that Cw = ξCη, we see that θC ∈ HtC is in Mt,0

if and only if CθewθC = 0 in Ht for all w ∈ W0. By formula (1) in 3.1, this

is equivalent to

φt

(

∑

w∈W0

w(θeuθ
∏

α∈R+

1− qθα
1− θα

)
)

= 0, for all u ∈W0. (8)

Let A be as in the proof of Theorem 3.4, then

θCθρC
′ = θAC ′.

Clearly, θCθρC
′ = 0 in Ht if and only if θ−1

ρ θCθρC
′ = 0 in Ht. Since

θ−1
ρ θCθρC

′ =
∑

u∈W0

(θ−1
ρ θA, θeu)θ

′
uC

′

and θ′uC
′, u ∈W0, are linearly independent in HtC

′, we see that θCθρC
′ = 0

if and only if φt((θ
−1
ρ θA, θeu)) = 0 for all u ∈ W0. By the formula (6)

established in the proof of Theorem 3.4, we have

(θ−1
ρ θA, θeu) = (−1)νq−

ν
2

∑

w∈W0

w(θeuθ
∏

α∈R+

1− qθα
1− θα

).

Hence the condition φt((θ
−1
ρ θA, θeu)) = 0 for all u ∈ W0 is exactly the

condition (8). We proved (a).

Since C ′θρ−1C = (−1)l(w0)C ′θρC, (b) follows from (a) by applying the

involution h→ h∗. The theorem is proved.

4.2. The left ideal I defined in 2.1 is in the kernel of the H-module ho-

momorphism ψ : H → HtC
′, h → hC ′. Thus ψ induces an H-module

homomorphism N → HtC
′, denoted again by ψ. Denote the image of Cw in

H/I by the same notation Cw. Then Cw, w ∈ Y0, form a basis of N = H/I.

For each two-sided cell c, let N≤c be the submodule of N spanned by all

Cw, w ∈ Y0 and w ≤L u for some u ∈ c∩Y0. Also let N<c be the submodule

of N spanned by all Cw, w ∈ Y0 − Y0 ∩ c and w ≤L u for some u ∈ c ∩ Y0.

Then ψ(N<c) and ψ(N≤c) are submodules of HtC
′. This gives some natural
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submodules of HtC
′. Theorem 4.1 asserts that ψ(N≤c0) = HtCθρC

′ is either

0 or an irreducible submodule of HtC
′. In general, ψ(N≤c)/ψ(N<c) maybe

0 or reducible, but it is not clear whether this module is semisimple if it is

not 0. (We refer to [2] for the definition of preorder ≤L.)

When k is the field of complex numbers, by [11, Theorem 7.8], ψ(N≤c0)=

HtCθρC
′ is 0 if and only if the set

gt,q = {X ∈ Lie(G) |Ad(t)(X) = qX}

contains nonzero semisimple elements.

For a simple H-module L, there exists a unique two-sided cell c of W

such that CwL 6= 0 for some w ∈ c and CuL = 0 for any u ∈ W − c with

u ≤LR w . The two-sided cell c is denoted by cL and is called the two-sided

cell attached to L. (We refer to [2] for the definition of preorder ≤LR.)

We have seen that for a simple H-module L, cL = c0 if and only if CL 6=

0. Theorem 4.1 gives a computable (in principle) realization of irreducible

H-modules with attached two-sided cell c0.
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