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Abstract

In this paper we establish exact strong laws of large numbers for the range of a Pareto

random variable. The underlying density is f(x) = x−2I(x ≥ 1). Neither the first nor

second moments of this random variable exist, which makes these theorems unusual. The

results are of the form
∑n

i=1
aiRi/bn → γ, as n → ∞, where Ri is the range from the ith

sample.

1. Introduction

This paper establishes strong laws for the range from a sample of size

mn from a Pareto distribution. We examine two cases, one where the sample

size is constant and another where it grows to infinity at a particular rate.

Unusual strong laws have been established for the ratio of order statistics.

This was started with the papers [2]-[5] and has exploded in the literature

with [7]-[12] and many other papers. Here, we look at the range. So instead

of looking at the ratio, we now examine the difference between our order

statistics. And once again we see that Exact Strong Laws exist in this

environment as well.

We need to mention that the constant, C, used in the proofs denotes

a generic real number that is not necessarily the same in each appearance.

It is used as an upper bound in order to establish the convergence of our
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various series. Also, we define lg x = ln(max{e, x}) and lg 2x = lg (lg x),

which is not a logarithm with a base of 2. Likewise lg 3x = lg (lg (lg x)).

2. Preliminary Results

The underlying distribution is the classic Pareto, f(x) = x−2I(x ≥ 1).

This random variable does not possess a first and hence a second moment.

So the usual estimator for the variance is a multiple of the range, which is

the largest minus the smallest order statistics from the sample. We will look

at two cases, one with a fixed sample size from each set of data, to one that

increases in time.

Let {Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ mi} be independent and identically Pareto

distributed random variables. The order statistics are no longer independent

and they are denoted by {Xi(1), . . . ,Xi(mi)}, where Xi(1) ≤ Xi(2) ≤ · · · ≤

Xi(mi). Next we observe the smallest and largest order statistics from this

sample, Xi(1) and Xi(mi). From these two random variables we obtain the

range, Ri = Xi(mi) −Xi(1), i = 1, 2, . . . n.

We first obtain the joint density of Xi(1) and Xi(mi), which is

f(x1, xmi
) =

mi!

(mi − 2)!
f(x1)[F (xmi

)− F (x1)]
mi−2f(xmi

)

= mi(mi−1)
1

x21

[(

1−
1

xmi

)

−

(

1−
1

x1

)]mi−2 1

x2mi

I(1≤x1≤xmi
)

=
mi(mi − 1)

x21x
2
mi

[

1

x1
−

1

xmi

]mi−2

I(1 ≤ x1 ≤ xmi
).

Next, let w = x1 and r = xmi
−x1. The Jacobian is one and the joint density

of W and Ri is

f(w, r) =
mi(mi − 1)

w2(r + w)2

(

r

(r + w)w

)mi−2

I(w ≥ 1)I(r ≥ 0).

Integrating out the dummy variable, w, we see that the density of Ri is

fRi
(r) = mi(mi − 1)rmi−2

∫

∞

1

dw

(r + w)miwmi
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where r ≥ 0. The key to this paper is the messy integration which is ex-

plained in the following lemma.

Lemma. As r → ∞ we have

∫

∞

1

dw

(r + w)mwm
∼

1

(m− 1)rm
.

Proof. Even though there are 2m terms in the partial fractions, we only

need to be concerned with just three of them. Let x = w/r, then

1

wm(r + w)m
=r−2m

(

1

xm(x+ 1)m

)

= r−2m

(

m
∑

i=1

ai
xi

+
m
∑

i=1

bi
(x+ 1)i

)

.

Solving

1

xm(x+ 1)m
=

m
∑

i=1

ai
xi

+

m
∑

i=1

bi
(x+ 1)i

we have

1 = xm(x+ 1)m

(

m
∑

i=1

ai
xi

+

m
∑

i=1

bi
(x+ 1)i

)

or

1 = a1x
m−1(x+ 1)m+ · · ·+ am(x+ 1)m + b1x

m(x+ 1)m−1 + · · ·+ bmxm.

We have 2m equations with 2m terms, but all we need are two facts. The

first is, by setting x = 0, we see that am = 1. The other important fact is

that the largest term, x2m−1, gives us the equation a1 + b1 = 0. Replacing

w into the first term in each of the two series leads to

a1
x

+
b1

x+ 1
= a1r

(

1

w
−

1

w + r

)

.

The integration of these two terms produces

a1r

∫

∞

1

(

1

w
−

1

w + r

)

dw = a1rlg (1 + r).

All the other constants are, fortunately, unimportant.

Surprisingly, all the other terms involving the bi’s are of the same order.
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56 ANDRÉ ADLER [March

If i ≥ 2, we see that

bi
(x+ 1)i

=
bir

i

(w + r)i

which, when integrated leads to

bir
i

∫

∞

1
(w + r)−idw =

bir
i

(i− 1)(1 + r)i−1
∼

bi
(i− 1)

r.

The other terms, those involving the ai’s are of a much higher order. For

i ≥ 2, we have

ai
xi

=
air

i

wi

which, when integrated leads to

air
i

∫

∞

1
w−idw =

air
i

i− 1
.

So, the dominant term is the am term and since am = 1, we have

∫

∞

1

dw

(r + w)mwm
∼ r−2m

(

amrm

m− 1

)

=
1

(m− 1)rm

which concludes this proof. ���

Using this Lemma, we have, for all i ≥ 2

fRi
(r) = mi(mi − 1)rmi−2

∫

∞

1

dw

(r + w)miwmi
∼ mir

−2

as r → ∞. This fact allows us to establish an Exact Strong Law, see [1].

3. Main Results

We first look at what happens when the sample size is fixed.

Theorem 1. If b > 0 and {Xi1, . . . ,Xim} is a sample from the Pareto

distribution, then the strong laws of large numbers for Ri = Xi(m) −Xi(1) is

lim
n→∞

∑n
i=1

(lg i)b−2

i
Ri

(lg n)b
=

m

b
almost surely.
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Proof. Since fR(r) ∼ mr−2, it follows that rP{R > r} ∼ m. By applying

Example 2 from [1] the conclusion follows. ���

Next we examine what happens as the sample size increases at a partic-

ular rate.

Theorem 2. Let {Xi1, . . . ,Ximi
} be a sample from the Pareto distribution

where mn ∼ γ(lg n)β, then for γ, β and α+ β + 2 all positive

lim
n→∞

∑n
i=1

(lg i)α

i
Ri

(lg n)α+β+2
=

γ

α+ β + 2
almost surely.

Proof. Let an = (lg n)α/n, bn = (lg n)α+β+2 and cn = bn/an = n(lg n)β+2.

We use the partition

1

bn

n
∑

i=1

aiRi =
1

bn

n
∑

i=1

ai
[

RiI(|Ri| ≤ ci)− ERiI(|Ri| ≤ ci)
]

+
1

bn

n
∑

i=1

aiRiI(|Ri| > ci) +
1

bn

n
∑

i=1

aiERiI(|Ri| ≤ ci).

The first term vanishes almost surely by the Khintchine-Kolmogorov

Convergence Theorem, see page 113 of [6], and Kronecker’s lemma since

∞
∑

n=1

1

c2n
ER2

nI(|Rn| ≤ cn) <C
∞
∑

n=1

1

c2n

∫ cn

1
mndr < C

∞
∑

n=1

mn

cn

<C

∞
∑

n=1

1

n(lg n)2
< ∞.

The second term vanishes, with probability one, by the Borel-Cantelli

lemma since

∞
∑

n=1

P{|Rn| > cn} < C

∞
∑

n=1

∫

∞

cn

mn

r2
dr = C

∞
∑

n=1

mn

cn
< ∞.

Thus, our almost sure limit follows from the last term in our partition

∑n
i=1 aiERiI(|Ri| ≤ ci)

bn
∼

∑n
i=1

(lg i)α

i

∫ ci
1

mi

r
dr

(lg n)α+β+2
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=

∑n
i=1

(lg i)α

i
milg ci

(lg n)α+β+2

∼
γ
∑n

i=1
(lg i)α+β+1

i

(lg n)α+β+2

→
γ

α+ β + 2
.

which concludes this proof. ���

Next we explore what happens when α+ β + 2 = 0.

Theorem 3. Let {Xi1, . . . ,Ximi
} be a sample from the Pareto distribution

where mn ∼ γ(lg n)β, then for γ and β both positive

lim
n→∞

∑n
i=1

1
i(lg i)β+2Ri

lg 2n
= γ almost surely.

Proof. Let an=1/(n(lg n)β+2), bn=lg 2n and cn= bn/an=n(lg n)β+2lg 2n.

Again, we use the partition

1

bn

n
∑

i=1

aiRi =
1

bn

n
∑

i=1

ai
[

RiI(|Ri| ≤ ci)− ERiI(|Ri| ≤ ci)
]

+
1

bn

n
∑

i=1

aiRiI(|Ri| > ci) +
1

bn

n
∑

i=1

aiERiI(|Ri| ≤ ci).

The first term vanishes almost surely by the Khintchine-Kolmogorov

Convergence Theorem and Kronecker’s lemma since

∞
∑

n=1

1

c2n
ER2

nI(|Rn| ≤ cn) <C

∞
∑

n=1

1

c2n

∫ cn

1
mndr < C

∞
∑

n=1

mn

cn

<C
∞
∑

n=1

1

n(lg n)2lg 2n
< ∞.

The second term vanishes, with probability one, by the Borel-Cantelli

lemma since

∞
∑

n=1

P{|Rn| > cn} < C

∞
∑

n=1

∫

∞

cn

mn

r2
dr = C

∞
∑

n=1

mn

cn
< ∞.
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Thus, our almost sure limit follows from the last term in our partition

∑n
i=1 aiERiI(|Ri| ≤ ci)

bn
∼

∑n
i=1

1
i(lg i)β+2

∫ ci
1

mi

r
dr

lg 2n

=

∑n
i=1

1
i(lg i)β+2milg ci

lg 2n

∼
γ
∑n

i=1
1

i(lg i)β+2 (lg i)
β lg i

lg 2n

=
γ
∑n

i=1
1

ilg i

lg 2n

→ γ.

which concludes this proof. ���

We can continue to get smaller and smaller coefficients and norming

sequences. We conclude with one such result.

Theorem 4. Let {Xi1, . . . ,Ximi
} be a sample from the Pareto distribution

where mn ∼ γ(lg n)β, then for γ and β both positive

lim
n→∞

∑n
i=1

1
i(lg i)β+2lg 2i

Ri

lg 3n
= γ almost surely.

Proof. Let an = 1/(n(lg n)β+2lg 2n), bn = lg 3n and

cn = bn/an = n(lg n)β+2lg 2nlg 3n. Once again, we use the partition

1

bn

n
∑

i=1

aiRi =
1

bn

n
∑

i=1

ai
[

RiI(|Ri| ≤ ci)− ERiI(|Ri| ≤ ci)
]

+
1

bn

n
∑

i=1

aiRiI(|Ri| > ci) +
1

bn

n
∑

i=1

aiERiI(|Ri| ≤ ci).

The first term vanishes almost surely by the Khintchine-Kolmogorov

Convergence Theorem and Kronecker’s lemma since

∞
∑

n=1

1

c2n
ER2

nI(|Rn| ≤ cn) < C

∞
∑

n=1

1

c2n

∫ cn

1
mndr < C

∞
∑

n=1

mn

cn
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< C

∞
∑

n=1

1

n(lg n)2lg 2nlg 3n
< ∞.

The second term vanishes, with probability one, by the Borel-Cantelli

lemma since

∞
∑

n=1

P{|Rn| > cn} < C

∞
∑

n=1

∫

∞

cn

mn

r2
dr = C

∞
∑

n=1

mn

cn
< ∞.

Thus, our almost sure limit follows from the last term in our partition

∑n
i=1 aiERiI(|Ri| ≤ ci)

bn
∼

∑n
i=1

1
i(lg i)β+2lg 2i

∫ ci
1

mi

r
dr

lg 3n

=

∑n
i=1

1
i(lg i)β+2lg 2i

milg ci

lg 3n

∼
γ
∑n

i=1
1

i(lg i)β+2lg 2i
(lg i)β lg i

lg 3n

=
γ
∑n

i=1
1

ilg ilg 2i

lg 3n

→ γ.

which concludes this proof. ���
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