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Abstract

In this paper, we would like to make a report on Morse inequalities and embeddings

for CR manifolds with transversal CR circle action. The results are contained in [24], [23],

[21], [20] and [25]. Furthermore, in the last section we will give an explicit example for

S
1-equivariant Szegő kernels and their expansion on the sphere S

3 in C2 with respect to

a family of transversal CR S
1-actions.

1. Introduction

Let X be a real smooth manifold of dimension 2n − 1, n ≥ 2, together

with a Lie group action of S1. A CR structure (of codimension one or hy-

persurface type) on X is a complex subbundle T 1,0X of rank n − 1 of the

complexified tangent space CTX which is formally Frobenius integrable and

satisfies T 1,0X ∩ T 1,0X = {0}. Given a Lie group action of S1 we say that

this S1-action is CR if it preserves T 1,0X and transversal if its infinitesimal

generator is transversal to the real part of T 1,0X ⊕ T 1,0X at every point.
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We start with a summary of results. In [24], we study the Fourier compo-

nents of Kohn-Rossi cohomology on compact CR manifolds with transversal

CR S1-action. By using the Kohn’s L2-estimate on CR manifold, we show

that without Levi-form assumptions the Fourier components of Kohn-Rossi

cohomology are always finite dimensional. Then by studying the asymptotic

properties of the Fourier components of the Szegő kernel function we get

the asymptotic property of the dimension of the Fourier components of the

Kohn-Rossi cohomology. A corollary of our results is that under the condi-

tion that the CR manifold is weakly pseudoconvex everywhere and strongly

pseudoconvex at one point, the CR manifold admits many S1-equivariant

CR functions.

In [21], we study the equivariant embedding of a compact strongly pseu-

doconvex CR manifold with a transversal CR circle action. We develop an

asymptotic expansion for the Fourier components of the Szegő kernels con-

cerning CR functions which only lie in the positive Fourier components of

the space of CR functions. Making use of the Szegő kernel asymptotic ex-

pansion, we can construct enough S1-equivariant CR functions by which the

CR manifold can be CR embedded into some CN . Moreover, in the last

section of this paper, we give an example to describe explicitly such Szegő

kernel asymptotic expansion with respect to the positive Fourier components

of the space of CR functions on the unit sphere S3 in C2.

It is well known that there are no compact Levi-flat CR manifolds in the

complex Euclidean space. Thus, a natural question is whether the Levi-flat

CR manifolds can CR embedded into the projective space by means of CR

sections of a CR line bundle of positive curvature. This is the analogue of the

Kodaira embedding theorem from complex geometry. In Kodaira’s original

proof of the Kodaira embedding theorem (see [34]), the Kodaira vanishing

theorem is used to show that there are enough holomorphic sections with

values in the large tensor powers of a holomorphic positive line bundle. In

[23], we use the Szegő kernel asymptotic expansion method developed by

Hsiao and Marinescu [19] to establish Morse inequalities on CR manifolds

with a transversal CR circle action when such CR manifolds admit rigid

CR line bundles. On such CR manifold, without any assumption on the

positivity of the Levi-form we showed that a positive rigid CR line bundle

is always big.
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In [25], we prove that a certain weighted Fourier-Szegő kernel admits a

full asymptotic expansion and by using these asymptotics, we show that if

X admits a transversal CR locally free S1-action and there is a rigid positive

CR line bundle L over X, then X can be CR embedded into the projective

space without any positivity assumptions on the Levi form. In particular,

when X is Levi-flat and admits a transversal CR S1-action, we improve the

regularity in the Kodaira embedding theorem of Ohsawa and Sibony [35] to

C∞.

2. Morse Inequalities and Embeddings for CR Manifolds

with Circle Action, I: without line bundle

The problem of embedding CR manifolds attracts a lot of attention. A

classical result of L. Boutet de Monvel [5] tells us that any compact strongly

pseudoconvex CR manifold of real dimension greater or equal to five can be

globally CR embedded into CN , for some N ∈ N. The classical example

of non-embeddable three dimensional strongly pseudoconvex CR manifold

appears implicitly in the non-fillable example of pseudoconcave manifold by

Grauert [16], Andreotti-Siu [2] and Rossi [36] and was explicited by Burns

[7]. In [30] Lempert proved that a compact strongly pseudoconvex three

dimensional CR manifold which admits a transversal CR circle action can

always be CR embedded into the complex Euclidean space. Lempert proved

that such CR manifold can always bound a strongly pseudoconvex complex

surface. Then by Kohn’s result [28] the Cauchy-Riemann operator ∂b as an

operator between L2 spaces will have closed range. Thus by L. Boutet de

Monvel [5] and Kohn [29] the CR manifold will be CR embedded into some

complex Euclidean space. In [21], under the same condition as in [30], we

showed that the functions in the CR embedding map can only come from the

Fourier components of the space of CR functions. For further information on

the embedding problem for CR manifolds we refer the reader to [12, 14, 15]

and the references therein. Now we describe the results in [21].

Let (X,T 1,0X) be a compact connected CR manifold of dimension 2n−
1, n ≥ 2, where T 1,0X is the given CR structure on X. That is, T 1,0X

is a subbundle of the complexified tangent bundle CTX of rank n − 1 ,

satisfying T 1,0X ∩ T 0,1X = {0}, where T 0,1X = T 1,0X , and [V,V] ⊂ V,
where V = C∞(X,T 1,0X).
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We assume that X admits a S1-action: S1 ×X → X, (eiθ, x) 7→ eiθ ◦ x.
Here, we use eiθ (0 ≤ θ < 2π) to denote the S1-action. Let T ∈ C∞(X,TX)

be the global real vector field induced by the S1-action given as follows

(Tu)(x) =
∂

∂θ

(
u(eiθ ◦ x)

) ∣∣∣
θ=0

, u ∈ C∞(X). (2.1)

Definition 2.1. We say that the S1-action is CR if

[T,C∞(X,T 1,0X)] ⊂ C∞(X,T 1,0X), (2.2)

where [ , ] is the Lie bracket between smooth vector fields onX. Furthermore,

we say that the S1-action is transversal if for each x ∈ X,

CT (x)⊕ T 1,0
x (X)⊕ T 0,1

x X = CTxX. (2.3)

For x ∈ X, we say that the period of x is 2π
q
, q ∈ N, if eiθ ◦ x 6= x for

every 0 < θ < 2π
q

and e
i 2π

q ◦ x = x. For each q ∈ N, put

Xq =
{
x ∈ X; the period of x is 2π

q

}
(2.4)

and set p = min {q ∈ N; Xq 6= ∅}. Without of loss of generality, we assume

p = 1. It is well-known that if X is connected, then X1 is an open and

dense subset of X (see [13] and also the appendix in [24]). We denote

Xreg := X1. We call x ∈ Xreg a regular point of the S1-action. Let Xsing

be the complement of Xreg .

We assume throughout this paper that (X,T 1,0X) is a compact con-

nected CR manifold with a transversal CR locally free S1-action and we

denote by T the global vector field induced by the S1-action. Let ω0 ∈
C∞(X,T ∗X) be the global real 1-form determined by 〈ω0 , u 〉 = 0, for ev-

ery u ∈ T 1,0X ⊕ T 0,1X and 〈ω0 , T 〉 = −1.

Definition 2.2. For x ∈ X, the Levi-form Lx associated with the CR struc-

ture is the Hermitian quadratic form on T 1,0
x X defined as follows. For any

U, V ∈ T 1,0
x X, pick U ,V ∈ C∞(X,T 1,0X) such that U(x) = U , V(x) = V .

Set

Lx(U, V ) =
1

2i
〈[U ,V ](x), ω0(x)〉 (2.5)
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where [ , ] denotes the Lie bracket between smooth vector fields. Note that

Lx does not depend on the choice of U and V.

Definition 2.3. The CR structure on X is called pseudoconvex at x ∈ X

if Lx is positive semidefinite. It is called strongly pseudoconvex at x if

Lx is positive definite. If the CR structure is (strongly) pseudoconvex at

every point of X, then X is called a (strongly) pseudoconvex CR manifold.

In particular, we call X a Levi-flat CR manifold if the Levi-form vanishes

everywhere.

Let ∂b : Ω
0,q(X) → Ω0,q+1(X) be the tangential Cauchy-Riemann oper-

ator where Ω0,q(X) is the space of smooth (0, q)-forms on X defined as in [8].

Set Ω0,q
m (X) = {u ∈ Ω0,q(X) : LTu = imu} where LT is the Lie derivative

along direction T . From (2.2) and (2.3) one has LT∂b = ∂bLT . Then it

follows that ∂b : Ω
0,q
m (X) → Ω0,q+1

m (X). In [24] we define

Hq
b,m(X) :=

Ker ∂b : Ω
0,q
m (X) → Ω0,q+1

m (X)

Im ∂b : Ω
0,q−1
m (X) → Ω0,q

m (X)
(2.6)

for m ∈ Z. In particular, H0
b,m(X) = {u ∈ C∞(X) : Tu = imu, ∂bu = 0}.

We call H0
b,m(X) the m-th Fourier components of the space of CR functions.

2.1. Morse inequalities

From Kohn’s L2-estimate it is easy to see that dimHq
b,m(X) is always

finite dimensional without any assumption on the Levi-form. In [24], we

studied the Morse inequalities for dimHq
b,m(X) as m → ∞. We have the

following results.

Theorem 2.4. Let X be a compact connected CR manifold with a transver-

sal CR S1-action. Assume that dimRX = 2n − 1, n ≥ 2. Then for every

q = 0, 1, 2, . . . , n − 1, we have

dimHq
b,m(X) ≤ mn−1

2πn

∫

X(q)
|detLx|dvX(x) + o(mn−1),m → ∞. (2.7)

Here, X(q) is a subset of X where the Levi-form is nondegenerate and has

exactly q-negative eigenvalues. detLx is the multiplication of the eigenvalues

of the Levi-form with respect to a given S1-invariant Hermitian metric on X.
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Theorem 2.5. Let X be a compact connected CR manifold with a transver-

sal CR S1-action. Assume that dimRX = 2n − 1, n ≥ 2. For every q =

0, 1, 2, . . . , n − 1, as m→ ∞, we have

q∑

j=0

(−1)q−jdimHj
b,m(X) ≤ mn−1

2πn

q∑

j=0

(−1)q−j

∫

X(j)
|detLx|dvX(x)+o(mn−1).

(2.8)

In particular, when q = n−1, as m→ ∞, we have the asymptotic Riemann-

Roch theorem

n−1∑

j=0

(−1)jdimHj
b,m(X) =

mn−1

2πn

n−1∑

j=0

(−1)j
∫

X(j)
|detLx|dvX (x) + o(mn−1).

(2.9)

Recently, analogues to the Atiyah-Singer index theorem in complex ge-

ometry a CR index theorem is established in [9].

Corollary 2.6. Let X be a compact connected CR manifold with a transver-

sal CR S1-action. Assume that dimRX = 2n − 1, n ≥ 2. If X is weakly

pseudoconvex and strongly pseudoconvex at a point, then as m→ ∞

dimH0
b,m(X) ≈ mn−1, dimHq

b,m(X) = o(mn−1) for q ≥ 1. (2.10)

In the main results above, we only consider the Morse inequalities for

the positive Fourier component dimHq
b,m(X) as m → ∞. In fact, we also

have the Morse inequalities for the negative Fourier component Hq
b,m(X) as

m→ −∞. More precisely, we have

Theorem 2.7. Let X be a compact connected CR manifold with a transver-

sal CR S1-action. Assume that dimRX = 2n − 1, n ≥ 2. For every q =

0, 1, 2, . . . , n − 1, as m→ −∞, we have

dimHq
b,m(X) ≤ |m|n−1

2πn

∫

X(n−1−q)
|detLx|dvX (x) + o(|m|n−1),

q∑

j=0

(−1)q−jdimHj
b,m(X)

≤ |m|n−1

2πn

q∑

j=0

(−1)q−j

∫

X(n−1−j)
|detLx|dvX(x) + o(|m|n−1).

(2.11)



✐

“BN15N21” — 2020/6/30 — 11:16 — page 99 — #7
✐

✐

✐

✐

✐

2020] MORSE INEQUALITIES AND EMBEDDINGS FOR CR MANIFOLDS 99

In particular, when q = n − 1, as m → −∞, we have the asymptotic

Riemann-Roch theorem

n−1∑

j=0

(−1)jdimHj
b,m(X) =

|m|n−1

2πn

n−1∑

j=0

(−1)j
∫

X(n−1−j)
|detLx|dvX(x)+o(|m|n−1).

(2.12)

From Theorem 2.4, Theorem 2.5 and Theorem 2.7, we deduce

Theorem 2.8. Let X be a compact connected CR manifold of real dimension

2n−1 with a transversal CR S1-action. Let q ∈ {0, 1, · · · , n−1}. Assume that

the Levi form of X has q non-positive and n−1−q non-negative eigenvalues

everywhere. Then

dimHj
b,m(X) = o(mn−1), as m→ ∞, for j 6= q

dimHj
b,m(X) = o(|m|n−1), as m→ −∞, for j 6= n− 1− q.

(2.13)

If moreover the Levi-form is non-degenerate at some point, then

dimHq
b,m(X) ≈ mn−1, as m→ ∞

dimHn−1−q
b,m (X) ≈ |m|n−1, as m→ −∞

dimHq
b (X) = ∞,dimHn−1−q

b (X) = ∞.

(2.14)

In particularly, if X is weakly pseudoconvex and strongly pseudoconvex

at a point, then

dimHn−1
b,m (X) ≈ |m|n−1 as m→ −∞

and in particluar dimHn−1
b (X) = ∞. Moreover, dimHq

b,m(X) = o(|m|n−1)

as m→ −∞ for q ≤ n− 2.

Recently, when X is only assumed to be weakly pseudoconvex the esti-

mate dimHq
b,m(X) = o(|m|n−1) when m → −∞ is improved by Wang and

Zhou [38, Theorem 1.3].

2.2. Szegő kernel expansion and embeddings of CR manifolds

In this section, we describe the results in [21]. From Corollary 2.6, we

know that dimH0
b,m(X) ≈ mn−1 as m → ∞ when X is strongly pseudo-
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covnex. Hence, the space of CR functions which lie in the positive Fourier

components of the space of CR functions is very large and thus a natural

question is that whether X can be CR embedded into some CN by CR

functions which lie in the positive Fourier components. In [21] we give an

affirmative answer to this question. More precisely, we proved

Theorem 2.9. Let X be a compact connected strongly pseudoconvex CR

manifold with a locally free transversal CR S1-action. Then X can be CR

embedded into some complex Euclidean space by the CR functions which lie

in the positive Fourier components of the space of CR functions.

The main machinery to establish Theorem 2.9 are Szegő kernel expan-

sion methods. In [21], making use of the complex stationary phase formula

due to Melin-Sjöstrand [33] we have the following asymptotic expansion of

the Fourier components of the Szegő kernel.

Theorem 2.10. Let X be a compact strongly pseudoconvex CR manifold

with a transversal CR circle action. For x0 ∈ Xreg, let (z, θ, ϕ) be canonical

coordinates centered at x0 and defined on a canonical patch D1 = {(z, θ) :

|z| < ε1, |θ| < π}. Set D = {(z, θ) ∈ Cn−1 × R : |z| < ε, |θ| < π
2 } ⋐ D1.

Then on D ×D, we have

Sm(x, y) ≡ 1

2π
eim(x2n−1−y2n−1+Φ(z,w))b̂(z, w,m)modO(m−∞),

where

b̂(z, w,m) ∼
∞∑

j=0

mn−1−j b̂j(z, w) in Sn−1
loc (1, D̃ × D̃),

b̂j(z, w) ∈ C∞(D̃ × D̃), j = 0, 1, 2, · · · ,
b̂0(z, z) = π−(n−1) |detLx| , x = (z, 0), ∀z ∈ D̃.

(2.15)

Here, we set D̃ =
{
z ∈ Cn−1 : |z| < ε

}
. In particular, we have

Sm(x, x) ≡ 1

2π
b̂(z, z,m)modO(m−∞). (2.16)

Theorem 2.11. Let X be a compact strongly pseudoconvex CR manifold

with a transversal CR circle action. Assume x0 ∈ Xk, k > 1. Let D1, D
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and (z, θ, ϕ) be as above with π
k
− ǫ replaced by δ1. For k ∤ m we have

Sm(x, x0) = 0 for all x ∈ D. For k | m we have

Sm(x, x0) ≡
k

2π
eim(x2n−1+Φ(z,0))b̂(z, 0,m)modO(m−∞) (2.17)

on D. In particular, given k | m and x = x0, we have

Sm(x0, x0) =
k

2π
b̂(0, 0,m) +O(m−∞)

and

b̂(0, 0,m) ∼ b̂0(0, 0)m
n−1 + b̂1(0, 0)m

n−2 + · · ·

in the sense that for any N ∈ N0 there exists CN > 0 independent of m such

that ∣∣∣∣∣∣
b̂(0, 0,m) −

N∑

j=0

b̂j(0, 0)m
n−1−j

∣∣∣∣∣∣
≤ CNm

n−2−N

holds for all m ∈ N.

In [20], we give a complete description of the diagonal expansion for the

m-th Fourier component of the Szegő kernel function as m→ +∞. We also

obtain explicit formulas for the first three coefficients of such an expansion.

3. Morse Inequalities and Embeddings for CR Manifolds

with Circle Action, II: with line bundle

The well-known Grauert-Riemenschneider conjecture states that a semi-

positive holomorphic line bundle on a compact complex manifold is big if it

is positive at least at one point. This conjecture was first solved by Siu [37]

by using the ∂-equation method. Motivated by Siu’s solution of Grauert-

Riemenschneider conjecture, Demailly [10] gave another proof of this con-

jecture by establishing the holomorphic Morse inequalities. The original

proof of the holomorphic Morse inequalities was based partly on Siu’s tech-

niques and partly on an extension of Witten’s analytic proof for the standard

Morse inequalities. Natural problems [11] are to extend the Morse inequali-

ties to cohomology associated to other operators than the ∂-operator and to

non-compact complex manifolds. Getzler [17] extended the Morse inequali-

ties for Hq
b (X,L

k) on a compact strongly pseudoconvex CR manifold X for
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1 ≤ q ≤ n−2 where L is a CR line bundle over X. Recently, Hsiao-Marinescu

[19] established the Morse inequalities for Hq
b (X,L

k) on a general CR man-

ifold which satisfies Y (q) condition. Both Getzler’s and Hsiao-Marinescu’s

work depend on the sign of the Levi-form on CR manifolds satisfying some

algebraic conditions. So their work can not be used on Levi-flat CR mani-

folds which play an important part in CR geometry. In [23] we studied the

Morse inequalities on CR manifolds which admit rigid CR line bundles. For

Morse inequalities on non-compact complex manifolds which will be not fo-

cused on in this paper we refer the reader to [4, 26, 31, 32] and the references

therein.

In our work [23] we do not need any restrictions on the behavior of

the Levi-form of the CR manifold. From the Morse inequalities we have

established, we prove that a rigid CR line bundle is big if it is positive. In

order to describe this work, we first recall the definition of rigid CR line

bundles.

3.1. Rigid CR vector bundle

In this subsection we use the notations from [22].

Definition 3.1. Let D ⊂ X be an open set. We say that a function u ∈
C∞(D) is rigid if Tu = 0. We say that a function u ∈ C∞(X) is Cauchy-

Riemann (CR for short) if ∂bu = 0. We say that u ∈ C∞(X) is rigid CR if

∂bu = 0 and Tu = 0.

The following definitions for CR vector bundles can be found in [27].

Definition 3.2. A complex vector bundle (E, π,X) over X is called CR

vector bundle if

(i) E is a CR manifold,

(ii) π : E → X is a CR submersion,

(iii) E ⊕ E ∋ (ξ1, ξ2) → ξ1 + ξ2 ∈ E and C × E ∋ (λ, ξ) → λξ ∈ E are CR

maps.

A smooth section s ∈ Γ(U,E) defined on an open set U ⊂ X is called CR

section if the map s : U → E is CR.
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Let (E1, π1,X) and (E2, π2,X) be two CR vector bundles over X. A map

F : E1 → E2 is called a CR bundle isomorphism if F is a C∞-diffeomorphism

such that F,F−1 are CR maps, π2 ◦ F = π1 and F is fiberwise linear.

Given a CR vector bundle (E, π,X) we find (see [27]) the linear partial

differential operator ∂
E

b : Γ(X,E) → Γ(X,E ⊗ T ∗0,1X) satisfying

(a) ∂
E

b (f · s) = s∂b(f) + f∂
E

b (s) for all f ∈ C∞(X) and s ∈ Γ(X,E),

(b) s ∈ Γ(U,E) is a CR section if and only if ∂
E
b s = 0.

Definition 3.3. A CR vector bundle (E, π,X) of rank r is called locally

CR trivializable if for any point p ∈ X there exists an open neighborhood

U ⊂ X such that E|U is CR vector bundle isomorphic to the trivial CR

vector bundle U × Cr.

The following lemma is well-known.

Lemma 3.4. Let (E, π,X) be a CR vector bundle. The following are equiv-

alent:

(i) (E, π,X) is locally CR trivializable,

(ii) For any p ∈ X there exists a smooth frame {f1, . . . , fr} of E|U on an

open neighborhood U ⊂ X around p such that f1, . . . , fr : U → E are

CR sections.

Remark 3.5. Let {f1, . . . , fr} be a frame of E|U for some open set U ⊂ X.

Then {f1, . . . , fr} is called CR frame if any fk, 1 ≤ k ≤ r, is a CR section.

Given two CR frames of E|U we find by (a) and (b) that the corresponding

transition matrix is CR in the sense that any entry is a CR function.

Definition 3.6. Let (X,T 1,0X) be a CR manifold and let T ∈ Γ(X,TX)

be a CR vector field. A CR bundle lift of T to (E, π,X) is a linear partial

differential operator TE : Γ(X,E) → Γ(X,E) (with smooth coefficients) such

that

(i) TE(f · s) = T (f) · s+ fTE(s) for all f ∈ C∞(X) and s ∈ Γ(X,E),

(ii) [TE, ∂
E
b ] = 0.
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In order to define [TE , ∂
E

b ] we need to define TE on (0, 1) forms with

values in E first. But this definition follows immediately from the fact that

any w ∈ Γ(X,E ⊗ T ∗0,1X) locally can be written w =
∑r

j=1 fj ⊗ ωj where

{ωj} are (0, 1)-forms and {fj} are local frames of E and that T is defined

also for (0, q)-forms using the Lie derivative.

Definition 3.7. Let (X,T 1,0X) be a CR manifold and let T ∈ Γ(X,TX)

be a CR vector field. A CR vector bundle (E, π,X) of rank r over X with a

CR bundle lift TE of T is called rigid CR (with respect to TE) if for every

point p ∈ X there exists an open neighborhood U around p and a CR frame

{f1, . . . , fr} of E|U with TE(fj) = 0 for 1 ≤ j ≤ r.

A section s ∈ Γ(X,E) is called a rigid CR section if TEs = 0 and

∂
E

b s = 0. The frame {fj}rj=1 in Definition 3.7 is called a rigid CR frame of

E|U . Note that it follows from Lemma 3.4 that any rigid CR vector bundle

is locally CR trivializable.

Remark 3.8. In [24] and [25] we gave a definition of rigid CR vector bundle

by assuming that the transition functions of a chosen local trivializing frame

are rigid and CR. This definition is actually equivalent to the one given in

Definition 3.7(see Lemma 3.9).

Lemma 3.9. Let (E, π,X) be CR vector bundle over a CR manifold

(X,T 1,0X) of codimension d and let T ∈ Γ(X,TX) be a CR vector field.

The following are equivalent:

(i) T has a CR bundle lift TE such that (E, π,X) is rigid CR with respect

to TE.

(ii) There exist an open cover {Uj}j∈N of X and CR frames {f j1 , . . . , f jr }
for E|Uj

, j ∈ N, such that the corresponding transition matrices are

rigid CR in the sense that any entry is a rigid CR function.

Lemma 3.10. Let (X,T 1,0X) be a CR manifold with a transversal CR S1-

action. Let T be the infinitesimal generator of the S1-action. Let (E, π,X)

be a locally CR trivializable CR vector bundle of rank r = 1. Assume that

TE is a CR bundle lift of T to (E, π,X). Then (E, π,X) is rigid CR. More

precisely, for any p ∈ X there exist an open neighborhood U ⊂ X around p

and a CR frame {f} of E|U with TE(f) = 0.
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Definition 3.11. Let E be a rigid vector bundle over X. Let 〈 · | · 〉E be a

Hermitian metric on E. We say that 〈 · | · 〉E is a rigid Hermitian metric if

for every local rigid frame f1, . . . , fr of E, we have T 〈 fj | fk 〉E = 0, for every

j, k = 1, 2, . . . , r.

In order to simplify the notation we will denote by ∂b, T the operators

∂
E

b , T
E where E is any rigid CR vector bundle on X. Consider a locally CR

trivializable CR line bundle L over X with a CR bundle lift of T . By Lemma

3.10 we find that L is rigid CR with respect to that bundle lift. Hence there

exists an open covering (Uj)
N
j=1 and a family of rigid CR trivializing frames

{sj}Nj=1 with each sj defined on Uj and the transition functions between

different rigid CR frames are rigid CR functions. Let Lk be the k-th tensor

power of L. Then {skj }Nj=1 is a family of rigid CR trivializing frames on

each Uj . Let ∂
Lk

b : Ω0,q(X,Lk) → Ω0,q+1(X,Lk) be the tangential Cauchy-

Riemann operator. Since Lk is rigid CR we have ∂bf = ∂bfj ⊗ skj , Tf =

(Tfj)⊗ skj for any f = fj ⊗ skj ∈ Ω0,q(X,Lk) and

T∂b = ∂bT on Ω0,q(X,Lk). (3.1)

Let hL be a Hermitian fiber metric on L. The local weight of hL with

respect to a local rigid CR trivializing section s of LL over an open subset

D ⊂ X is the function Φ ∈ C∞(D,R) for which

|s(x)|2hL = e−2Φ(x), x ∈ D. (3.2)

We denote by Φj the weight of hL with respect to sj.

Definition 3.12. Let L be a rigid CR line bundle and let hL be a Hermitian

metric on L. The curvature of (L, hL) is the the Hermitian quadratic form

RL = R(L,hL) on T 1,0X defined by

RL
p (U, V ) =

〈
d(∂bΦj − ∂bΦj)(p), U ∧ V

〉
, U, V ∈ T 1,0

p X, p ∈ Uj. (3.3)

Due to [19, Proposition 4.2], RL is a well-defined global Hermitian form,

since the transition functions between different frames sj are annihilated

by T .

Definition 3.13. We say that (L, hL) is positive if the associated curvature

RL
x is positive definite at every x ∈ X.



✐

“BN15N21” — 2020/6/30 — 11:16 — page 106 — #14
✐

✐

✐

✐

✐

106 HENDRIK HERRMANN AND XIAOSHAN LI [June

3.2. Morse inequalities for CR manifolds with circle action

Let (X,T 1,0X) be a compact connected CRmanifold of dimension 2n−1,

n > 2. Let L be a rigid CR line bundle over X. For every u ∈ Ω0,q(X,Lk), we

can define Tu ∈ Ω0,q(X,Lk) in a natural way since locally we can find rigid

CR frames such that the transition functions are rigid and CR. Moreover,

we have

T∂b = ∂bT on Ω0,q(X,Lk), (3.4)

where ∂b : Ω0,q(X,Lk) → Ω0,q+1(X,Lk) denotes the tangential Cauchy-

Riemann operator. For every m ∈ Z, the m-th Fourier component of ∂b
cohomology is given by

Hq
b,m(X,Lk) :=

Ker ∂b : Ω
0,q
m (X,Lk) → Ω0,q+1

m (X,Lk)

Im∂b : Ω
0,q−1
m (X,Lk) → Ω0,q

m (X,Lk)
. (3.5)

Without any Levi curvature assumption, for any m ∈ Z and any q =

0, 1, 2 . . . , n− 1, we have

dimHq
b,m(X,Lk) <∞. (3.6)

Fix λ ≥ 0 and set Hq
b,≤λ(X,L

k) :=
⊕

m∈Z,|m|≤λ

Hq
b,m(X,Lk). In this work,

we study the asymptotic behavior of the space Hq
b,≤kδ(X,L

k) and its partial

Szegő kernel. Our main results are the following

Theorem 3.14. For k large and for every q = 0, 1, 2, . . . , n− 1, we have

dimHq
b,≤kδ(X,L

k) ≤ (2π)−n (−1)q

(n−1)!
kn
∫

X

∫

Rx,q

⋂
[−δ,δ]

(iRL
x+2siLx)

n−1∧(−ω0)+o(k
n),

(3.7)

where RL
x denotes the curvature of L, Lx denotes the Levi form of X, ω0 is

the unique global non-vanishing real one form determined by 〈ω0 , u 〉 = 0,

∀u ∈ T 1,0X ⊕ T 0,1X and 〈ω0 , T 〉 = −1 and

Rx,q := {s ∈ R : RL
x + 2sLx has exactly q negative and

n− 1− q positive eigenvalues}.
(3.8)

Note that RL
x ,Lx ∈ T ∗1,0

x X ∧T ∗0,1
x X (see Definition 2.2). Hence, (RL

x +

2sLx)
n−1 ∧ (−ω0(x)) is a global 2n − 1 form on X. Any Hermitian fiber
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metric hL on L induces a curvature RL. It is easy to see that the integral

in (3.7) does not depend on the choice of Hermitian fiber metric of L.

Theorem 3.15. For k large and for every q = 0, 1, 2, . . . , n− 2, we have

q∑

j=0

(−1)q−jdimHj
b,≤kδ(X,L

k) (3.9)

≤ (2π)−n kn

(n−1)!
(−1)q

q∑

j=0

∫

X

∫

Rx,j

⋂
[−δ,δ]
(iRL

x+i2sLx)
n−1 ∧ (−ω0(x))ds+o(k

n),

and when q = n− 1, we have asymptotic Riemann-Roch-Hirzebruch theorem

n−1∑

j=0

(−1)jdimHj
b,≤kδ(X,L

k) (3.10)

= (2π)−n kn

(n−1)!

n−1∑

j=0

∫

X

∫

Rx,j

⋂
[−δ,δ]

(iRL
x+i2sLx)

n−1 ∧ (−ω0(x))ds+o(k
n).

Assume thatRL is positive. If δ > 0 is small enough then Rx,j∩[δ, δ] = ∅,
∀x ∈ X and for every j = 1, 2, . . . , n − 1. From this observation, (3.7) and

(3.10), we conclude that

dimH0
b,≤kδ(X,L

k)

=(2π)−n 1

(n − 1)!
kn
∫

X

∫

Rx,0

⋂
[−δ,δ]

(iRL
x + i2sLx)

n−1 ∧ (−ω0(x))ds + o(kn).

Hence, dimH0
b,≤kδ(X,L

k) ≈ kn. We conclude that

Theorem 3.16. If L is a positive rigid CR line bundle, then L is big, that

is, dimH0
b (X,L

k) & kn when k ≫ 1.

3.3. Kodaira embedding theorems for CR manifolds with circle

action

Ohsawa and Sibony [35] constructed for every κ ∈ N a CR projective

embedding of class Cκ of a Levi-flat CR manifold by using ∂-estimates.

A natural question is whether we can improve the regularity to κ = ∞.

Adachi [1] showed that the answer is no, in general. The analytic difficulty of
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this problem comes from the fact that the Kohn Laplacian is not hypoelliptic

on Levi flat manifolds. In [25] we give an affirmative answer to this question

under the condition that the CR manifold admits a transversal CR S1-action

and a rigid positive CR line bundle. Now we describe the results in [25].

For every m ∈ Z, let L2
m(X,Lk) ⊂ L2(X,Lk) be the completion of

C∞
m (X,Lk) with respect to the Hermitian inner product ( · | · ) induced by

the S1-invariant Hermitian metric on X and the rigid Hermitian fiber metric

hL for L. Let

Q
(0)
m,k : L2(X,Lk) → L2

m(X,Lk) (3.11)

be the orthogonal projection with respect to ( · | · ). We recall the weighted

Fourier Szegő projection defined in [25]. Fix δ > 0 and a function

τδ ∈ C∞
0 ((−δ, δ)), 0 ≤ τδ ≤ 1, τδ = 1 on

[
−δ
2
,
δ

2

]
. (3.12)

Let Fk,δ : L
2(X,Lk) → L2(X,Lk) be the bounded operator given by Fk,δ(u)

=
∑

m∈Z τδ
(
m
k

)
Q

(0)
m,k(u),∀u ∈ L2(X,Lk). For every λ > 0, we consider

the partial Szegő projector Πk,≤λ : L2(X,Lk) → H0
b,≤λ(X,L

k) which is the

orthogonal projection on the space of equivariant CR functions of degree less

than λ. The weighted Fourier-Szegő operator is defined as follows.

Pk,δ := Fk,δ ◦ Πk,≤kδ ◦ Fk,δ : L
2(X,Lk) → H0

b,≤kδ(X,L
k). (3.13)

The Schwartz kernel of Pk,δ with respect to dvX is the smooth function

Pk,δ(x, y) ∈ Lk
x ⊗ (Lk

y)
∗ satisfying

(Pk,δu)(x) =

∫

X

Pk,δ(x, y)u(y) dvX (y) , u ∈ L2(X,Lk). (3.14)

Let Pk,δ,s : L2
comp(D) → L2(D) be the localization of Pk,δ with respect to

a local rigid frame s of L over an open subset D ⊂ X. Here, L2
comp(D)

is a subspace of L2(D) with elements having compact support in D. Let

Pk,δ,s(x, y) ∈ C∞(D × D) be the Schwartz kernel of Pk,δ,s with respect to

dvX , defined as in (3.14). Then we can describe the structure of the localized

Fourier-Szegő kernel Pk,δ,s(x, y).

Theorem 3.17. Let X be a compact CR manifold with a transversal CR

locally free S1-action and let L be a positive rigid CR line bundle on X.
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Consider a point p ∈ X and a canonical coordinate neighborhood (D,x =

(x1, . . . , x2n−1)) centered at p = 0. Let s be a local rigid CR frame of L on

D and set |s|2h = e−2Φ. Fix δ > 0 small enough and D0 ⋐ D. Then

Pk,δ,s(x, y) =

∫

R
eikϕ(x,y,t)g(x, y, t, k)dt +O(k−∞) on D0 ×D0, (3.15)

where ϕ ∈ C∞(D × D × (−δ, δ)) is a phase function such that for some

constant c > 0 we have

dxϕ(x, y, t)|x=y = −2Im ∂bΦ(x)− tω0(x),

dyϕ(x, y, t)|x=y = 2Im ∂bΦ(x) + tω0(x), Imϕ(x, y, t) ≥ c|z − w|2,
(x, y, t) ∈ D ×D × (−δ, δ), x = (z, x2n−1), y = (w, y2n−1),

Imϕ(x, y, t) +
∣∣∣∂ϕ∂t (x, y, t)

∣∣∣
2
≥ c |x− y|2, (x, y, t) ∈ D ×D × (−δ, δ),

ϕ(x, y, t) = 0 and ∂ϕ
∂t
(x, y, t) = 0 if and only if x = y,

(3.16)

and g(x, y, t, k) ∈ Sn
loc (1;D×D× (−δ, δ))∩C∞

0 (D×D× (−δ, δ)) is a symbol

with expansion

g(x, y, t, k) ∼
∞∑

j=0

gj(x, y, t)k
n−j in Sn

loc (1;D ×D × (−δ, δ)), (3.17)

and for x ∈ D0 and |t| < δ we have

g0(x, x, t) = (2π)−n
∣∣det

(
RL

x + 2tLx

)∣∣ |τδ(t)|2 . (3.18)

Corollary 3.18. In the conditions of Theorem 3.17 we have as k → ∞,

Pk,δ(x, x) ∼
∞∑

j=0

kn−jbj(x) in S
n
loc(1;X) (3.19)

where bj(x) ∈ C∞(X), j = 0, 1, 2, . . . , and

b0(x) = (2π)−n

∫

R

∣∣det
(
RL

x + 2tLx

)∣∣ |τδ(t)|2 dt, (3.20)

with τδ ∈ C∞
0 (R) introduced in (3.12).

In [25], we give an example to show that the Szegő kernel for H0
b,≤kδ(X,
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Lk) does not admit an asymptotic expansion as k → ∞. Thus, the weighted

Szegő kernel is necessary for the existence of an expansion.

We define now the Kodaira map. Consider an open set D ⊂ X which is

S1-invariant and let s : D → L be a local rigid CR trivializing section on D.

For any u ∈ C∞(X,Lk) we write u(x) = sk(x)⊗ũ(x) onD, with ũ ∈ C∞(D).

Let {fj}dkj=1 be an orthonormal basis of H0
b,≤kδ(X,L

k) with respect to ( · | · )
such that fj ∈ H0

b,mj
(X,Lk) and set gj = Fk,δfj, 1 ≤ j ≤ dk. The Kodaira

map is defined on D by

Φk,δ : D −→ CPdk−1,

x 7−→
[
Fk,δf1, . . . , Fk,δfdk

]
:=
[
g̃1(x), . . . , g̃dk(x)

]
, for x ∈ D.

(3.21)

Theorem 3.19. Let (X,T 1,0X) be a compact CR manifold with a transver-

sal CR locally free S1-action. Assume there is a rigid positive CR line bundle

L over X. Then there exists δ0 > 0 such that for all δ ∈ (0, δ0) there exists

k(δ) so that for k > k(δ) and any orthonormal basis {fj}dkj=1 of H
0
b,≤kδ(X,L

k)

with respect to ( · | · ) such that the map Φk,δ introduced in (3.21) is a smooth

CR embedding.

In [18], it was shown that if X admits a transversal CR locally free S1-

action and there is a rigid positive CR line bundle L over X, then X can

be CR embedded into projective space under the assumption that condition

Y (0) holds on X. In Theorem 3.19 we remove the Levi curvature assumption

Y (0) used in [18].

As a consequence of Theorem 3.19 we obtain an embedding result for

Levi-flat CR manifolds.

Corollary 3.20. Let X be a compact Levi-flat CR manifold. Assume that

X admits a transversal CR locally free S1-action and a positive rigid CR

line bundle. Then there exists δ0 > 0 such that for all δ ∈ (0, δ0) there exists

k(δ) so that for k > k(δ) the map Φk,δ introduced in (3.21) is a C∞ CR

embedding of X in CPdk−1 which is S1-equivariant with respect to weighted

diagonal actions.
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4. Equivariant Szegő Kernels on S3

In this section we will give an explicit example for S1-equivariant Szegő

kernels and their expansion. We will study the 3-sphere S3 as the boundary

of the open unit ball B2 in C2 together with a family of CR S1-actions. On

the one hand for each of this actions we have to construct a metric on S3

satisfying several properties (see the definition of rigid Hermitian metric).

We will do this in Section 4.1 and we will also calculate the determinant of

the Levi form (see Lemma 4.7) there. On the other hand we will compute

the Szegö kernel for positive Fourier coefficients in such settings explicit by

constructing an orthonormal basis for the function spaces in question (see

Section 4.2, Theorem 4.10). In Section 4.3 we will discuss the example in

context of the general theory as presented in Section 2.2.

A point in C2 or S3 is always denoted by z = (z1, z2).

4.1. Setting

Let X = S3 = {ρ(z) := |z1|2 + |z2|2 = 1} ⊂ C2 be the 3-sphere together

with the CR structure given by T 1,0X = CTX ∩ T 1,0C2 = CZ where

Zz = γ(z)−1

(
z2

∂

∂z1
− z1

∂

∂z2

)

for z ∈ X and γ is a smooth non vanishing function defined on C2. Moreover,

let ℓ : X → C2 denote the inclusion map. For n ∈ Z consider the holomorphic

S1-action µ̃ : S1 × C2 → C2, (eiθ, z) 7→ (eiθz1, e
inθz2). Then µ̃ restricts to a

CR action on X which we will denote by µ. One has

Tz :=
∂

∂θ
µ(eiθ, z)|θ=0

= i

(
z1
∂

∂z 1
− z1

∂

∂z1
+ n

(
z2

∂

∂z2
− z2

∂

∂z2

))

for z ∈ X and T (resp. Z) can be extended in an obvious way to a vector

field on C2 also denoted by T (resp. Z). We further assume that |γ|X |
is µ-invariant. The following theorem describes crucial properties for the

CR S1-action µ on X for several n (see Definition 2.1 for the definition of

transversal CR S1-action).
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Theorem 4.1. One has that µ is:

(i) locally free ⇔ n 6= 0

(ii) globally free ⇔ n ∈ {±1}
(iii) transversal ⇔ n > 0

Proof. For n 6= 0 one has that Tz = 0 implies z = 0 /∈ X. On the other

hand T(0,1) = 0 when n = 0 which proves (i). In order to prove (ii) one

observe that for z = (0, z2) ∈ X, µ(eiθ, z) = z if and only if nθ ∈ 2πZ and

for z = (z1, z2) ∈ X such that z1 6= 0 one has µ(eiθ, z) = z if and only if

θ ∈ 2πZ. For the third part we define a 1-form α on C2 by

αz =
i

2
(z1dz1 − z1dz1 + z2dz2 − z2dz2) .

Then α 6= 0 in a neighbourhood around X and since α(gradρ)|X = 0 (where

ρ is a defining function for X) one has that ℓ∗α defines a non vanishing 1-

form on X. One has α(Z) = α(Z) = 0 and α(T )z = |z1|2 +n|z2|2. Thus, for
n > 0 one obtains α(T ) > 0 which implies CT ∩ T 1,0X ⊕ T 0,1X = 0. Given

n ≤ 0 set z1 =
√

−n/(1− n), z2 =
√

1/(1 − n) and z = (z1, z2). Then

|z|2 = 1 and

α(T )z =
−n
1− n

+
n

1− n
= 0 = α(Z)z = α(Z)z.

Since ℓ∗αz 6= 0 and the linear independency of Z and Z one has Tz ∈
T 1,0
z X ⊕ T 0,1

z X. ���

Remark 4.2. For |n| > 1 one can write X = Xreg∪̇Xn where Xreg = {z ∈
X|z1 6= 0}.

Given m ∈ Z, m ≥ 0, consider the space

C[z1, z2]m := spanC

(
{z 7→ zl1z

k
2 | l, k ≥ 0,m = l + nk}

)
.

Lemma 4.3. We have that the linear map ℓ∗ : C[z1, z2]m → H0
b,m(X) is well

defined and injective.

Proof. Since k, l ≥ 0 one has (z 7→ zl1z
k
2 )|X ∈ H0

b (X) as the restriction of a

holomorphic function and 2πzl1z
k
2 =

∫ 2π
0 (eiθz1)

l(einθz2)
ke−imθdθ for all z ∈

X if and only if m = l+ nk (see (2.6) for the definition of H0
b,m(X)). Hence
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ℓ∗C[z1, z2]m ⊂ H0
b,m(X). From the Bochner’s extension theorem it follows

that every smooth function in H0
b (X) extends uniquely to a function in

H0(B2)∩C∞(B2) whereH0(B2) denotes the space of holomorphic functions

on B2. Hence for f ∈ C[z1, z2]m with ℓ∗f = 0 we must have f = 0 which

proves the injectivity of ℓ∗ restricted to C[z1, z2]m. ���

As a direct consequence of Lemma 4.3 we have

dim (ℓ∗C[z1, z2]m) =

{
⌊m
n
⌋+ 1, for n ≥ 1,

∞, else,

and hence dimH0
b,m(X) = ∞ in the case n ≤ 0.

Remark 4.4. We observe the importance of having a transversal CR S1-

action for H0
b,m(X) being finite dimensional.

Lemma 4.5. Given n ≥ 1 we have ℓ∗C[z1, z2]m = H0
b,m(X).

Proof. By Lemma 4.3 we have ℓ∗C[z1, z2]m ⊂ H0
b,m(X). On the other hand

choose an arbitrary f ∈ H0
b,m(X). By the Bochner’s extension theorem we

find a uniquely determined F ∈ H0(B2) ∩C∞(B2) such that F |X = f . Put

F̃ (z) =
1

2π

∫ 2π

0
F (µ̃(eiθ, z))e−imθdθ for all z ∈ B2.

Then F̃ ∈ H0(B2) ∩ C∞(B2) and for any z ∈ X we have

F̃ (z) =
1

2π

∫ 2π

0
f(µ̃(eiθ, z))e−imθdθ = f(z)

which implies F̃ |X = f . By the uniqueness of the extension we find F = F̃

and hence

F (z) =
1

2π

∫ 2π

0
F (µ̃(eiθ, z))e−imθdθ for all z ∈ B2. (4.1)

Since F is holomorphic on B2 we can write F (z) =
∑

l,k≥0 al,kz
l
1z

k
2 in a small

neighbourhood around 0. Using (4.1) we find that al,k = 0 for m 6= l + nk,

i.e. only finite many al,k’s are different from 0. From the identity theorem

for holomorphic functions we find F = F̂ |
B2 with F̂ ∈ Cm[z1, z2] and ℓ

∗F̂ =

F|X = f . ���
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From now on we assume n ≥ 1. Since µ is transversal we find that a

global frame for CTX is given by (Z,Z, T ), where Z (resp. Z) is a frame

for T 1,0X (resp. T 0,1X). We want to construct an S1-invariant Hermitian

metric 〈·|·〉 on CTX such that

(∗) T 1,0X⊥T 0,1X, T⊥(T 1,0X ⊕ T 0,1X), 〈T |T 〉 = 1,

(∗∗) 〈u|v〉 is real if u, v are real tangent vectors.

We do so by defining (Z,Z, T ) to be an orthonormal frame. Then, (∗) and
(∗∗) are satisfied. Moreover, the assumptions on γ and the construction of

Z imply

dµ(eiθ, ·)zZz = λ(eiθ, z)Zµ(eiθ ,z)

for some smooth function λ on S1 × X with |λ| ≡ 1. Thus, the metric is

rigid. Note that for the S1-actions considered in this example, any rigid

Hermitian metric which satisfies (∗) and (∗∗) can be obtained in this way.

For z 6= 0 we define

αz =
γ(z)

|z1|2 + n|z2|2
(nz2dz1 − z1dz2) ∈ T 1,0∗

z C2

and

ω̃z = − i

2(|z1|2 + n|z2|2)
(z1dz1 − z1dz1 + z2dz2 − z2dz2) .

Furthermore, we set Z∗ = ℓ∗α, Z
∗
= ℓ∗α and ω0 = ℓ∗ω̃.

Lemma 4.6. (Z∗, Z
∗
,−ω0) is the dual frame for (Z,Z, T ).

Proof. A direct calculation shows ω0(Z) = ω0(Z) = 0, ω0(T ) = −1,

Z∗(T ) = Z
∗
(T ) = 0, Z∗(Z) = Z

∗
(Z) = 0 and Z∗(Z) = Z

∗
(Z) = 1. ���

Using this lemma we can compute the Levi form L and its determinant:

Lemma 4.7. One has

|detLz| =
1

2

|γ(z)|−2

|z1|2 + n|z2|2
.

Proof. Consider

Lz =
i

2
dω0|T 1,0

z X×T
0,1
z X
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=
1

2(|z1|2 + n|z2|2)
(dz1 ∧ dz1 + dz2 ∧ dz2) |T 1,0

z X×T
0,1
z X

=
1

2

|γ(z)|−2

|z1|2 + n|z2|2
Z∗
z ∧ Z∗

z. ���

We define an orientation on X by saying (Z,Z, T ) is an oriented frame.

Then the volume form of X is given by

dVX = − i

2
(Z∗+Z

∗
)∧(Z∗−Z∗

)∧(−ω0) = −iZ∗∧Z∗∧ω0 = −iℓ∗ (α ∧ α ∧ ω̃) .

In the next section we need to compute several integrals on X. Thus, it is

useful to have the following expression,

Lemma 4.8. One has

(α ∧ α ∧ ω̃)z = − i

2

( |γ(z)|
|z1|2 + n|z2|2

)2 (
(z1dz1 − z1dz1) ∧ dz2 ∧ dz2

+ndz1 ∧ dz1 ∧ (z2dz2 − z2dz2)
)
.

Proof. One calculates

2i
(
|z1|2 + n|z2|2

)3

|γ(z)|2 (α ∧ α ∧ ω̃)z

=
(
n2|z2|2dz1 ∧ dz1 + |z1|2dz2 ∧ dz2 − nz2z1dz1 ∧ z2 − nz1z2dz2 ∧ z1

)

∧ (z1dz1 − z1dz1 + z2dz2 − z2dz2)

=z2n
2|z2|2dz1∧dz1∧dz2−z2n2|z2|2dz1∧dz1∧dz2+z1|z1|2dz1∧dz2∧dz2

− z1|z1|2dz1∧dz2∧dz2+nz2|z1|2dz1∧dz1∧dz2−nz1|z2|2dz1∧dz2∧dz2
− nz2|z1|2dz1 ∧ dz1 ∧ dz2 + nz1|z2|2dz1 ∧ dz2 ∧ dz2

=
(
|z1|2 + n|z2|2

)
(z1dz1 ∧ dz2 ∧ dz2 − z1dz1 ∧ dz2 ∧ dz2

+nz2dz1 ∧ dz1 ∧ dz2 − nz2dz1 ∧ dz1 ∧ dz2) . ���

4.2. Computation of the Szegő kernel

Recall that we assume n ≥ 1. In this section we will construct an or-

thonormal basis for H0
b,m(X). Therefore we choose γ ∈ C∞(C2) (see Section
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4.1) such that

γ(z) =
√

|z1|2 + n|z2|2

on X. Then all the assumptions on γ stated in Section 4.1 are satisfied.

Fix m ≥ 0. For 0 ≤ k ≤ ⌊m
n
⌋ define sk ∈ H0

b,m(X) by

sk(z) =
√
akz

m−nk
1 zk2 , ak =

m+ (1− n)k + 1

4π2

(
m+ (1 − n)k

k

)
. (4.2)

One has the following lemma which we will prove in the end of this section.

Lemma 4.9. The set {s0, s1, . . . , s⌊m
n
⌋} is an orthonormal basis for H0

b,m(X).

Using this lemma we can write down the Szegő kernel (see Section 2.2).

Theorem 4.10. Fix n ∈ N, n ≥ 1. For the metric on X constructed

in Section 4.1 with γ chosen as above and any m ≥ 0 the Szegő kernel

Sm ∈ C∞(X ×X) for H0
b,m(X) is given by

Sm(z, w) =
1

4π2

⌊m
n
⌋∑

k=0

(
m+ (1− n)k

k

)
(m+(1−n)k+1) (z1w1)

m−nk (z2w2)
k .

In the following we will prove Lemma 4.9.

Proof of Lemma 4.9. Consider the map

ψ : (0, 1) × (0, 2π)2 → X

(r, s, t) 7→ (reis,
√

1− r2eit).

Then for any f ∈ C∞(X) one has

∫

X

fdVX =

∫ 1

0

∫ 2π

0

∫ 2π

0
ψ∗(fdVX),

i.e. we have to compute ψ∗(dVX). We write down

ψ∗dz1 = eis(dr + irds), ψ∗dz2 = eit(− r√
1− r2

dr + i
√

1− r2dt).

Thus,

ψ∗(dz1 ∧ dz1) = −2irdr ∧ ds, ψ∗(dz2 ∧ dz2) = 2irdr ∧ dt
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and

ψ∗(z1dz1 − z1dz1) = −2ir2ds, ψ∗(z2dz2 − z2dz2) = −2i(1− r2)dt.

Using this we get

ψ∗ ((z1dz1 − z1dz1) ∧ dz2 ∧ dz2) = −4r3dr ∧ ds ∧ dt
ψ∗ (ndz1 ∧ dz1 ∧ (z2dz2 − z2dz2)) = 4n(−r + r3)dr ∧ ds ∧ dt,

which leads to

ψ∗(dVX) = −1

2

(
|γ(reis,

√
1− r2eit)|

r2 + n(1− r2)

)2

(−4r3 + 4nr3 − 4nr)dr ∧ ds ∧ dt

= 2r
|γ(reis,

√
1− r2eit)|2

r2 + n(1− r2)
dr ∧ ds ∧ dt

= 2rdr ∧ ds ∧ dt

where for the last line we used that (γ ◦ ψ)(r, s, t) =
√
r2 + n(1− r2). Now

we compute

∫

X

sksldVX =
√
akal

∫ 1

0

∫ 2π

0

∫ 2π

0
r2m−n(k+l)

√
1−r2

k+l
ein(l−k)sei(k−l)t2rdrdsdt

=

{
0, for k 6= l,

4π2ak
∫ 1
0

(
r2
)m−nk (

1− r2
)k

2rdr, for k = l.

This shows directly that the sk are pairwise orthogonal. In order to prove

‖sk‖ = 1, 0 ≤ k ≤ ⌊m/n⌋ we set

I(k,m− nk) :=

∫ 1

0

(
r2
)m−nk (

1− r2
)k

2rdr

for 0 ≤ k ≤ ⌊m/n⌋ and observe for k > 0

I(k,m−nk) =

∫ 1

0
rm−nk (1− r)k dr

=

[
rm−nk+1(1− r)k

m−nk + 1

]1

0

+
k

m−nk + 1

∫ 1

0
rm−nk+1 (1−r)k−1 dr

=
k

m− nk + 1
I(k − 1,m− nk + 1)
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and I(0,m − nk + k) = (m− nk + k + 1)−1. By induction one gets

I(k,m− nk) =

((
m− nk + k

k

)
(m− nk + k + 1)

)−1

=
(
4π2ak

)−1

which finishes the proof of Lemma 4.9. ���

4.3. Discussion of the general theory in context of the example

For n ≥ 1 we have that the CR S1-action µ on the compact CR man-

ifold X = S3 is transversal (see Theorem 4.1). We also constructed a rigid

Hermitian metric such that T 1,0X⊥T 0,1X, T⊥(T 1,0X ⊕ T 0,1X), 〈T |T 〉 = 1

and 〈u|v〉 is real if u, v are real tangent vectors in Section 4.1. Theorem 4.10

provides an expression for the Szegő kernel:

Sm(z, w) =
1

4π2

⌊m
n
⌋∑

k=0

(
m+ (1− n)k

k

)
(m+(1−n)k+1) (z1w1)

m−nk (z2w2)
k .

(4.3)

From Lemma 4.7 and its proof we find that the CR structure is strictly

pseudoconvex and that the determinant of the Levi form is given by

|detLz| =
1

2

1

(|z1|2 + n|z2|2)2
.

On the one hand, all the assumptions for applying Theorem 2.10 or 2.11 are

satisfied. On the other hand we have an explicit expression for the Szegő

kernel. We will now study the expression in several cases and compare it to

the results stated in Theorem 2.10 and Theorem 2.11 in that specific case.

In the case n = 1 one has Xreg = X and (4.3) simplifies to

Sm(z, w) =
1

2
· m+ 1

2π2
(z1w1 + z2w2)

m .

Because of |detLz| = 1
2 , one observes that

Sm(z, z) =
m+ 1

2π2
· 1
2
=

1

2π

(
1

π
|detLz|m1 +

1

π
|detLz|m0

)

which verifies Theorem 2.10 and shows that the leading term of the expansion
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of Sm(z, z) coincides with the term stated in (2.16). Given n ≥ 2 one

considers the following two cases:

For z ∈ Xn and w ∈ X one has

Sm(z, w) =




0, for n ∤ m,
(
m
n
+ 1
) (z2w2)

m
n

4π2 , else,

and |detLz| = 1/(2n2). Thus, for z /∈ Xreg

Sm(z, z) =
m+ n

2π2
χm,n

2n2
=
χm,n

2π

(
1

π
|detLz|m1 +

n

π
|detLz|m0

)

where χm,n = n for n | m and χm,n = 0 otherwise, which coincides with the

behaviour of the Szegő kernel expansion on X \Xreg predicted in Theorem

2.11.

By way of comparison, for z, w ∈ X with |z1| = 1 (which implies z ∈
Xreg) one finds

Sm(z, w) =
m+ 1

4π2
(z1w1)

m

and |detLz| = 1/2 which leads to

Sm(z, z) =
m+ 1

2π2
· 1
2
=

1

2π

(
1

π
|detLz|m1 +

1

π
|detLz|m0

)
,

i.e. Sm(z, z) has an asymptotic expansion as described in Theorem 2.10.

Vice versa, one can apply Theorem 2.10 in order to deduce results on

the asymptotic behavior of certain expressions in elementary analysis. Let

m,n ≥ 1 be integer and a ∈ (0, 1) a real number. Consider the expression

A(m,n, a) :=

⌊m
n
⌋∑

k=0

(
m+ (1− n)k

k

)
(m+ (1− n)k + 1) (1− a)m−nk ak.

Choosing z∈Xreg satisfying |z2|2=a one finds that A(m,n, a)=4π2Sm(z, z)

holds. Thus, using Theorem 2.10 we can study the behavior of A(m,n, a)

for m→ ∞. One has for example

lim
m→∞

m−1A(m,n, a) = (1 + (n− 1)a)−2.
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23. C.-Y. Hsiao and X. Li, Szegő kernel asymptotics and Morse inequalities on CR mani-
folds with S

1 action, Asian J. Math., 22 (2018), no. 3, 413-450.

24. C.-Y. Hsiao and X. Li, Morse inequalities for Fourier components of Kohn-Rossi co-
homology of CR manifolds with S

1-action, Math. Z., 284 (2016), no. 1-2, 441-468.

25. C.-Y. Hsiao, X. Li and G. Marinescu, Equivariant Kodaira embedding of CR manifolds
with circle action, to appear inMichigan Mathematical Journal, arXiv:1603.08872, doi:
10.1307/mmj/1587628815.

26. C.-Y. Hsiao, R.-T. Huang, X. Li and G. Shao, S
1-equivariant Index theorems and

Morse inequalities on complex manifolds with boundary, arXiv:1711.05537. J. Funct.
Anal., 279 (2020), no. 3, 108558, 51 pp.

27. C. D. Hill and M. Nacinovich, A weak pseudoconcavity condition for abstract almost
CR manifolds, Invent. Math., 142 (2000), 251-283.

28. J. J. Kohn, The range of Cauchy-Riemann operator, Duke Math. J., 53 (1986), no. 2,
525-545.

29. J. J. Kohn, Estimates for ∂b on pseudoconvex CR manifolds. Pseudodifferential oper-
ators and applications, Proc. Sympos. Pure Math., 43 (Amer. Math. Soc., Providence,
RI, 1985), 207-217.

30. L. Lempert, On three dimensional Cauchy-Riemann manifolds, Jour. Amer. Math.
Soc., 5 (1992), no. 4, 923-969.



✐

“BN15N21” — 2020/6/30 — 11:16 — page 122 — #30
✐

✐

✐

✐

✐

122 HENDRIK HERRMANN AND XIAOSHAN LI [June

31. G. Marinescu, Asymptotics Morse inequalities for pseudoconcave manifolds, Ann.
Scuola Norm. Sup. Pisa C1. Sci., 23 (1996), no. 1, 27-55.

32. X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels,
Progress in Mathematics, 254 (Birkhäuser Verlag, Basel, 2007).
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