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Abstract

In this paper, we establish the existence and uniqueness of solutions for a nonlinear

fractional differential equation with nonlocal boundary conditions. We employ Schauder

fixed point theorem to study the existence of a solution of the problem. We also use

the Banach fixed point theorem to study the existence of a unique solution. Finally, we

provide examples to illustrate our results. Thus, we study the null-controllability for the

fractional differential equation with constraints on the control. The main tool used to

solve the problem of existence and convergence is an observability inequality of Carleman

type, which is “adapted” to the constraints. We then apply the obtained results to the

sentinels theory of Lions.

1. Existence and Uniqueness for Nonlinear Fractional Differential

Equations

1.1. Preliminaries

Firstly, we study the existence and uniqueness of the solution for a

following fractional differential equation :

cDαy+f (y)+ cDα−1g (y)=0, 0<t<1 and y (ς)=0, cDpy (1)=μy (η) . (1)
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where 1 < α < 2, 0 < p < 1, and 0 < η < ς < 1. The differential operator

is Caputo fractional derivative. Suppose that the functions f and g are

increasing. Then according to the Schauder fixed point theorem and Banach

contraction principal the solution exists and is unique (see [11]).

Let X = C ([0, 1]) be the Banach space of R valued continuous functions

on [0, 1] endowed with the norm

‖y‖X = max
t∈[0,1]

|y (t)| ,

and we consider a closed bounded subset of X

U = {y ∈ X, y (t) ≥ 0, t ∈ [0, 1]} .

Definition 1 ([9]).

1. The fractional integral of order α for a function y : [0,∞) −→ R can be

written as

Iαy (t) =
1

Γ (α)

∫ t

0
(t− s)α−1 y (s) ds, (2)

provided the right side is point wise defined on R+.

2. The Caputo derivative of order α for a function y : [0,∞) −→ R can be

written as

cDαy (t) = In−αy(n) (t) =
1

Γ (n− α)

∫ t

0
(t− s)n−α−1 y(n) (s) ds, (3)

where n = [α] + 1, provided the right side is point wise defined on R+.

3. Let (X, ‖.‖) be a Banach space and T : X −→ X. The operator T is a

contraction operator if there is an k ∈ (0, 1) such that y, v ∈ X imply

‖Ty − Tv‖ ≤ k ‖y − v‖ .

The following lemmas give some properties of fractional integrals.

Lemma 1 ([10]).

1. Let α, β > 0, Then the following relation hold

cDαtβ =
Γ (β + 1)

Γ (β + 1− α)
tβ−α, R(β) ≥ n. (4)
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2. For a function y ∈ Cn[0, 1] and α > 0, the following relation hold

Iα (cDαy (t)) = y (t) + c0 + c1t+ · · ·+ cn−1t
n−1, ci ∈ R. (5)

3. Let y ∈ Cn[0, 1]; f, g ∈ C([0, 1] × [0,+∞), [0,+∞)), y′′ and ∂g
∂t exist, y

is a solution of problem (1) if and only if y is a solution of the integral

equation

y (t) =
t− ς

∆
[Iα−pf (1, y (1)) + I1−pg (1, y (1))

+ µIα (f (ς, y (ς))− f (η, y (η))) + µI (g (ς, y (ς))− g (η, y (η)))]

+ Iαf (ς, y (ς)) + Ig (ς, y (ς))− Iαf (t, y (t))− Ig (t, y (t)) . (6)

where ∆ = 1
Γ(2−p) + µς − µη > 0.

Now, we state the fixed point theorems which enable us to prove the

existence and uniqueness of a solution of (1).

Theorem 1 ([5]).

1. Let U be a nonempty closed convex subset of a Banach space X and

T : X −→ X be a contraction operator. Then there is a unique y ∈ U

with Ty = y.

2. Let U be a nonempty closed convex subset of a Banach space X and

T : X −→ X be a continuous compact operator. Then T has a fixed

point in U .

1.1. Main results

Now, we consider the results of existence and uniqueness problem of the

FDE (1). Assume that the following growth conditions hold

(A1) The functions f, g : [0, 1] × [0,+∞) → R+ be continuous.

(A2) There exists a positive constants M and N such that for y(t) ∈ U

max {f (t, y(t)) , t ∈ [0, 1]} ≤ M,

max {g (t, y(t)) , t ∈ [0, 1]} ≤ N.
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(A3) For t ∈ [0, 1] and y, v ∈ X there exist a positive real numbers k1, k2 < 1

such that

|f (t, y)− f (t, v)| ≤ k1 ‖y − v‖ ,

|g (t, y)− g (t, v)| ≤ k2 ‖y − v‖ ,

and we use the following notations

λ1 =
ςα + 1

Γ (α+ 1)
+

∣

∣

∣

∣

1− ς

∆

∣

∣

∣

∣

(

1

Γ (α− p+ 1)
+

µ

Γ (α+ 1)
(ςα + ηα)

)

.

λ2 =
1− ς

Γ (2− p)∆
+

µ (ς + η) (1− ς)

∆
+ ς + 1.

Theorem 2.

1. Assume that (A1), (A2) hold. Then the problem (1) has a solution.

2. Assume that (A1), (A2) and (A3) are satisfied and the following inequal-

ity holds (λ1k1 + λ2k2) < 1.

Then the FDE (1) has a unique solution y ∈ U .

1.3. Examples

In this subsection, we present some examples to illustrate the main

results.

Example 1. We consider the problem :

cD3/2y+f (y)+ cD1/2g (y)=0, 0<t<1 and y (ς)=0, cD1/2y (1)=µy (η) .

(7)

In this problem we have α = 3
2 , p = 1

2 , µ = 1
10 , η = 1

3 and ς = 1
2 ; we take

f (y) =
(

et − 1
)

+
e−t

2

(

y (t)

1 + y(t)

)

,

g (y) =
1

20

(

1 + y(t)

3 + y(t)

)

,

we obtain that

k1 =
1

2
, k2 =

1

10
, λ1 = 1.2857 and λ2 = 2.0452.
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So, λ1k1 + λ2k2 = 0.8473 < 1; then by Theorem 2, problem (7) has a

unique solution.

Example 2. We consider the problem :

cD5/2y+f (y)+ cD3/2g (y)=0, 0<t<1 and y (ς)=0, cD1/2y (1)=µy (η) .

(8)

Here α = 5
2 , p = 1

2 , µ = 1
15 , η = 1

5 and ς = 1
4 .

We take

f (y) = t3 sin y(t),

g (y) =
t√

5(1 + t)
(1 + t cos y(t)) ,

we get

k1 =
1

3
, k2 =

1√
5
, λ1 = 0.5219 and λ2 = 1.7395.

So, λ1k1+λ2k2 = 0.9506 < 1 ; by Theorem 2, we conclude that problem

(8) has a unique solution.

Conclusion 1. As a preliminary summary, we study the existence and

uniqueness of solutions for nonlinear fractional differential equations with

the Caputo derivative. We were able to give an integral representation of

our problem. Schauder fixed point theorem was the key of our analysis to

establish existence of positive solutions. However, adding an extra condi-

tion, we succeeded to obtain a unique solution by using Banach fixed point

theorem.

2. Null-controllability for the Fractional Differential Equations

2.1. Introduction

Let Ω open subset bounded of Rn with ∂Ω = Γ of class C2.

Let ω ⊂ Ω non empty. We pose Q = Ω× (0, 1) ,Σ = Γ× (0, 1) .

Let the problem adjoint :

−cDαq+f ′ (y0) q− cDα−1g (y0) q=h+vχω in Q, q=0 on Σ, q (1)=0 in Ω,

(9)
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where f ′ (y0) denotes the derivative of f at point y0 and where y0 is the

solution of the problem

cDαy0 + f (y0)+
cDα−1g (y0) = ξ in Q, y0 = 0 on Σ, y0 (0) = y0 in Ω.

With

h ∈ L2 (Q) , (10)

and χω denotes the characteristic function of ω. Then, ∀v ∈ L2(ω × (0, 1)),

the problem (9) admits has unique solution q.

We suppose that

K is of finite dimension. (11)

Let K⊥ the orthogonal of K in L2(ω × (0, 1)). So we ask the question:

look for a function v ∈ L2(ω × (0, 1)) such that

∣

∣

∣

∣

∣

∣

∣

v ∈ K⊥

q (0) = 0 in Ω.

‖v‖L2(ω×(0,1)) = min.

(12)

What is called a problem of null controllability with the constraints on

the control v.

In this work we use the variational method to establish the existence of

an optimal control and the penalization method to characterize it. So we

pose the following hypothesis

{

∄ k ∈ K such that

k∈L2
(

0, 1;H1 (ω)
)

with cDαk+f ′ (y0) k+
cDα−1g (y0) k=0 in ω×(0, 1) .

(13)

Then, we introduce a weight function θ which will be precisely defined

in the following Lemma 2, but which -for instance- is such that

h ∈ L2 (Q) and θh ∈ L2 (Q) . (14)

We can now formulate our main result :
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Theorem 3. Under the previous hypothesis (10), (11), (13) and (14), and

∀ω ⊂ Ω,∃!v solution of the problem (9) and (12), of minimum norm in

L2(Ω× (0, 1)).

To prove the Theorem 3 we use the inequality of observability. So let

L = cDα + f ′ (y0)+
cDα−1g (y0) ,

V =
{

ρ ∈ C∞
(

Q
)

, ρ = 0 on Σ
}

,
(15)

and P = the orthogonal projection operator of L2(ω × (0, 1)) into K.

Let aθ,P (·, ·) defined by :

aθ,P (ρ, ρ̂) =

∫ 1

0

∫

Ω
LρLρ̂dxdt+

∫ 1

0

∫

ω
(ρ− Pρ) (ρ̂− P ρ̂) dxdt. (16)

According to (13) and Lemma 2 next, this bilinear form is a scalar

product on V.

Let Vθ,P be the Hilbert space, completed of V for the scalar product

aθ,P (ρ, ρ̂) and the associated norm.

We give now the characterization of optimal control by the optimality

system. More specifically, all of the functions v such that (9)−(12) hold

(admissible controls), is not empty and we immediately see that it is a closed

convex set of L2(ω× (0, 1)). Therefore, there is a unique v̂ of minimal norm

in L2(ω×(0, 1)). Now le q̂ the unique associated solution such that (9)−(12)

hold.

Theorem 4. Under the hypotheses of the Theorem 3, the couple (v̂, q̂) is the

solution of the optimal system (9)−(12) if and only if there is a function ρ̂

such that (v̂, q̂, ρ̂) is the solution of the optimal system (22)−(24).

2.2. Characterization of optimal control

We study in this work the existence and the characterization of an opti-

mal control for the problem (9)−(12) which is a problem of null-controllability

with linear constraints on the control. The main result is as follows :
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Theorem 5. We suppose (10), (11), (13) and (14). So for all open non

empty ω of Ω, there is a control v solution of the problem (9)−(12). In

addition, there is a single control v̂ of minimum norm in L2(Ω× (0, 1)).

The proof of Theorem 5 goes through several stages which essentially

use the following lemma.

Lemma 2. We suppose (10), then there is a “weight” function θ checking

θ > 0, θ of class C2 on Q, 1
θ bounded on Q and there is a constant C > 0

such that

∫ 1

0

∫

Ω

1

θ2
|ρ|2 dxdt≤C

(
∫ 1

0

∫

Ω
|Lρ|2 dxdt+

∫ 1

0

∫

ω
|ρ−Pρ|2 dxdt

)

,∀ρ∈V. (17)

The proof of the lemma is based on three arguments: The following

classic observability inequality :

∫ 1

0

∫

Ω

1

θ2
|ρ|2 dxdt ≤ C

(
∫ 1

0

∫

Ω
|Lρ|2 dxdt+

∫ 1

0

∫

ω
|ρ|2 dxdt

)

,∀ρ ∈ V.

The compactness of the operator P ensured here by the finite dimension

of K and finally the continuity of P .

As for the demonstration of Theorem 5, here are some indications. The

second member of (17) induces on the space V defined in (15) the scalar

product (16) which allows to construct Hilbert space Vθ,P supplemented by

V for the norm associated with (16). In this framework, the linear form

ρ 7−→
∫ 1
0

∫

Ω hρdxdt is continuous on Vθ,P and this, thanks to (17) and the

hypothesis (14) on h. Consequently, the Lax-Milgram theorem ensures the

existence of a unique ρθ in Vθ,P solution of the variational problem :

aθ,P (ρθ, ρ) =

∫ 1

0

∫

Ω
hρdxdt,∀ρ ∈ Vθ,P .

We set vθ = − (ρθ − Pρθχω)χω and qθ = Lρθ . Then the couple (vθ, qθ)

is a solution to the problem of null controllability (9) and (12). This estab-

lishes the first part of Theorem 5.

We can therefore speak of the set of controls v solutions of the con-

trollability problem (9) and (12). This set is not empty. It is convex and

closed in L2(0, 1;L2(ω)). Consequently, there exists a single optimal control
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v̂ of minimum norm in L2(0, 1;L2(ω)). Which establishes the second part of

Theorem 5; and therefore completes his demonstration.

We now characterize the optimal control v̂ of Theorem 5. Let q̂ be the

only element associated with v̂ such that the pair (v̂, q̂) satisfies (9) and

(12). We characterize (v̂, q̂) by a system of optimality using the penalization

method. More precisely, for ǫ > 0 we introduce the penalized function Jǫ

defined by :

Jǫ (v, q) =
1

2
‖v‖2L2(ω×(0,1))

+
1

2ǫ

∥

∥−cDαq + f ′ (y0) q −c Dα−1g (y0) q − h− vχω

∥

∥

2

L2(Ω×(0,1))
,

where the couples (v, z) are such that

v ∈ K⊥,−cDαq + f ′ (y0) q −c Dα−1g (y0) q ∈ L2(Ω× (0, 1)),

q = 0 on Σ, q (1) = 0, q (0) = 0 in Ω.
(18)

The problem of optimal control

inf {Jǫ (v, q) , (v, q) checked (18)} , (19)

admits a unique solution (vǫ, qǫ) that we characterize by a system of opti-

mality.

Proposition 1. We place ourselves under the hypotheses of Theorem 5. The

couple (vǫ, qǫ) is the optimal solution of the problem (19) if and only if there

exists a function ρǫ such as the triplet (vǫ, qǫ, ρǫ) or solution of the optimality

system

− cDαqǫ+f ′ (y0) qǫ− cDα−1g (y0) qǫ=h+vǫχω+ǫρǫ

in Q, qǫ=0 on Σ, qǫ (1)=0 in Ω, (20)

qǫ (0)=0 in Ω, cDαρǫ+f ′ (y0) ρǫ+
cDα−1g (y0) ρǫ=0

in Q, ρǫ=0 on Σ, vǫ=(ρǫ−Pρǫχω)χω. (21)

Remark 1. On the other hand, we have no information on ρǫ(0) and ρǫ(1);

we nevertheless obtain the convergence of the triplet (vǫ, qǫ, ρǫ) when ǫ −→ 0

towards a triplet (v̂, q̂, ρ̂) characteristic of the optimal solution of the problem

(9) and (12).
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More specifically, we have

Theorem 6. We place ourselves under the hypotheses of Theorem 5. The

couple (v̂, q̂) is the optimal solution of the problem (9) and (12) if and only

s’ there exists a function ρ̂ such that the triplet (v̂, q̂, ρ̂) is a solution of the

optimality system

v̂ ∈ K⊥, q̂ ∈ C
(

0, 1;L2 (Ω)
)

∩ L2
(

0, 1;H1
0 (Ω)

)

, ρ̂ ∈ Vθ,P , (22)

−cDαq̂ + f ′ (y0) q̂ −c Dα−1g (y0) q̂ = h+ v̂χω

in Q, q̂ = 0 on Σ, q̂ (1) = 0 in Ω, (23)

q̂ (0) = 0 in Ω, cDαρ̂+ f ′ (y0) ρ̂+
cDα−1g (y0) ρ̂ = 0

in Q, ρ̂ = 0 on Σ, v̂ = (ρ̂− P ρ̂χω)χω. (24)

2.3. Applications to discriminating sentinel

We consider in a first step an equation of state which, here, is given by

the following evolution system

cDαy+ f (y)+ cDα−1g (y) = ξ+λ̂ξ in Q, y = 0 on Σ, y (0) = y0+ τ ŷ0 in Ω.

(25)

Where the data in (25) are incomplete in the following sense : the

functions ξ and y0 are known with ξ in L2(Q) and y0 in L2(Ω). On the

other hand, the terms λ̂ξ and τ ŷ0 are not known. We suppose that

∥

∥

∥

̂ξ
∥

∥

∥

L2(Q)
≤ 1,

∥

∥ŷ0
∥

∥

L2(Ω)
≤ 1 and λ, τ ∈ R are quite small.

We then assume that there is a unique solution y = y (x, t;λ, τ) =

y (λ, τ) ∈ L2
(

0, 1,H1
0 (Ω)

)

∩ L∞
(

0, 1, L2 (Ω)
)

.

We then give in a second step an observation yobs of y on a non-

empty open O of Ω, that is : yobs = m0 +
∑N

i=1 βimi where the functions

m0,m1, ...,mN are known in L2(O × (0, 1)), but the real coefficients βi are

not known. We suppose that the βi are ”small” and that the functions mi

are linearly independent.
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Finally, in a third step, we consider a functional S to be determined

from a function h0 of L2(O × (0, 1)) and a non-empty open set ω such as

ω ⊂ O ⊂ Ω. More precisely, for a control function u ∈ L2(ω × (0, 1)), we

pose

S (λ, τ) =

∫ 1

0

∫

O

h0y (x, t;λ, τ) dxdt+

∫ 1

0

∫

ω
uy (x, t;λ, τ) dxdt. (26)

Definition 2. We say that S is the discriminating sentinel defined by h0,ω

and O if there exists a control u such that the couple (u,S) satisfies the

following three conditions :

∫ 1

0

∫

O

h0midxdt+

∫ 1

0

∫

ω
umidxdt = 0, 1 ≤ i ≤ N, (27)

∂S
∂τ

(0, 0) = 0, ∀ẑ0, (28)

‖u‖L2(ω×(0,1)) = min. (29)

Remark 2. The case ω = O corresponds to the original notion of sentinels

as introduced by Lions in [8] for an observation and a control of supports

in a same open ω = O. We therefore propose in the previous definition

a generalization of the concept of sentinels in the case of observation and

control of supports in two separate open ω 6= O.

The existence of a control u, and therefore of a sentinel S, is in fact

equivalent to a problem of null-controllability with constraints on the control.

To see it, we transform the conditions (27) and (28). For condition (27), we

consider the vector subspace of L2(ω × (0, 1)) generated by the functions

miχω. Let K be this space, then there exists k0 unique in K such that

∫ 1

0

∫

O

h0midxdt+

∫ 1

0

∫

ω
k0midxdt = 0, 1 ≤ i ≤ N.

If therefore, we denote K⊥ the orthogonal additional of K in L2(ω ×
(0, 1)), then the condition (27) is equivalent to u − k0 = v ∈ K⊥. We then

transform the condition (28) by returning on the one hand to the definition

of ∂S
∂τ (0, 0) and by introducing on the other hand adjoint q. We then show

that the search for a control u such that the pair (u,S) satisfies (27)−(29)
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is equivalent to the search for a control v such that the couple (v, q) is a

solution of the following system :







v ∈ K⊥,− cDαq+f ′ (y0) q− cDα−1g (y0) q=h0χO+k0χω+vχω in Q,

q = 0 on Σ, q (1) = 0 in Ω, q (0) = 0 in Ω, ‖v‖L2(ω×(0,1)) = min.
(30)

We recognize in the problem (30) the problem (9) and (12) with h =

h0χO + k0χω.
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