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Abstract

In this research article, we discuss the existence results and uniqueness of solutions for

a class of boundary value problems of fractional differential equations with the ψ–Caputo

fractional derivative. The reasoning is mainly based upon different types of classical fixed

point theory such as the Banach contraction principle and Krasnoselskii’s fixed point theo-

rem. Besides, the Ulam-Hyers result is addressed for the proposed problem. We illustrate

our main findings, with a particular case example included to show the applicability of our

outcomes.

1. Introduction

Fractional calculus generalizes the integer-order integration and differen-

tiation concepts to an arbitrary(real or complex) order. Fractional calculus

is one of the most emerging areas of investigation. The fractional differen-

tial operators are used to model many biological and physical phenomena,

mathematical modeling of engineering, etc. in a much better form as com-

pared to ordinary differential operators, which are local. To get a couple of

developments about the theory of fractional differential equations, one can

allude to the monographs of Hilfer [17], Kilbas et al [22], Miller and Ross

[23], Oldham [25], Pudlubny [26], Sabatier et al [28], Tarasov [31] and the

references therein.
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At the present day, there are numerous results on the existence and

uniqueness of solutions for fractional differential equations. For greater de-

tails, the readers are cited the previous research [22, 10, 15, 12, 4, 8] and

the references therein. however, due to the fact that in lots of conditions,

which include nonlinear analysis and optimization, locating the exact solu-

tion of differential equations is almost tough or impossible, we don’t forget

approximate solutions. it is essential to observe that only stable approximate

solutions are proper. various approaches of stability analysis are adopted for

this reason. The HU-type stability concept has been taken into considera-

tion in the severa literature. The said stability analysis is an clean and easy

manner on this regard. This type idea of stability become formulated for

the primary time by means of Ulam [32], and then the next year it become

elaborated with the aid of Hyers [18].

Inside the starting, this concept became implemented to ordinary dif-

ferential equations after which extended to fractional diferential equation

FDEs. We refer the readers to [19, 20, 21, 24, 9, 27].

In this paper deals with the existence and uniqueness of solutions for

boundary-value problem of the nonlinear ψ–Caputo fractional differential

equations





CD
α,ψ

a+ u(t) = f(t, u(t),CD
α,ψ

a+ u(t)), t ∈ J := [a, T ],

u(T ) = λu(η).

(1)

where CDα;ψ
a+

is the ψ-Caputo fractional derivative of order α ∈ (0, 1],

f : [a, T ] × R −→ R is a given continuous function. λ is real constant and

η ∈ (a, T ).

Here is a brief outline of the paper. The Section 2 provides the definitions

and preliminary results that we will need to prove our main results and

present an auxiliary lemma that provides solution representation for the

solutions of Problem (1). In Section 3, we establish existence and uniqueness

for fractional differential equations involving ψ–Caputo fractional differential

operator. In Section 4, we discuss some types of fractional Ulam stability.

In Section 5, we give an example to illustrate the obtained results.
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2. Preliminaries and Lemmas

In this section, we introduce some notations and definitions of fractional

calculus and present preliminary results needed in our proofs later.

Let C(J,R) the space of real and continuous functions with the norm

‖u‖∞ = sup {‖u(t)‖ : t ∈ J} .

Let L1(J,R) be the Banach space of Lebesgue integrable functions u : J → R,

equipped with the norm

‖u‖L1 =

∫

J

|u(t)| dt.

We begin by defining ψ-Riemann-Liouville fractional integrals and deriva-

tives. In what follows,

Definition 1 ([4]). For α > 0, the left-sided ψ–Riemann-Liouville fractional

integral of order α for an integrable function u : J −→ R with respect to

another function ψ : J −→ R that is an increasing differentiable function

such that ψ′(t) 6= 0, for all t ∈ J is defined as follows

Iα;ψ
a+

u(t) =
1

Γ(α)

∫ t

a

ψ′(s)(ψ(t) − ψ(s))α−1u(s)ds, (2)

where Γ is the classical Euler Gamma function.

Definition 2 ([4]). Let n ∈ N and let ψ, u ∈ Cn(J,R) be two functions

such that ψ is increasing and ψ′(t) 6= 0, for all t ∈ J. The left-sided ψ–

Riemann–Liouville fractional derivative of a function u of order α is defined

by

Dα;ψ
a+

u(t) =

(
1

ψ′(t)

d

dt

)n
In−α;ψ
a+

u(t)

=
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(s)(ψ(t) − ψ(s))n−α−1u(s)ds,

where n = [α] + 1.

Definition 3 ([4]). Let n ∈ N and let ψ, u ∈ Cn(J,R) be two functions such

that ψ is increasing and ψ′(t) 6= 0, for all t ∈ J. The left-sided ψ-Caputo
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fractional derivative of u of order α is defined by

CDα;ψ
a+

u(t) = In−α;ψ
a+

(
1

ψ′(t)

d

dt

)n
u(t),

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.

To simplify notation, we will use the abbreviated symbol

u
[n]
ψ (t) =

(
1

ψ′(t)

d

dt

)n
u(t).

From the definition, it is clear that

CDα;ψ
a+

u(t) =





∫ t

a

ψ′(s)(ψ(t) − ψ(s))n−α−1

Γ(n− α)
u
[n]
ψ (s)ds , if α /∈ N,

u
[n]
ψ (t) , if α ∈ N.

(3)

We note that if u ∈ Cn(J,R) the ψ–Caputo fractional derivative of order

α of u is determined as

CDα;ψ
a+

u(t) = Dα;ψ
a+


u(t)−

n−1∑

k=0

u
[k]
ψ (a)

k!
(ψ(t) − ψ(a))k


 .

(see, for instance, [4, Theorem 3]).

Lemma 1 ([6]). Let α, β > 0, and u ∈ L1(J,R). Then

Iα;ψ
a+

Iβ;ψ
a+

u(t) = Iα+β;ψ
a+

u(t), a.e. t ∈ J.

In particular, if u ∈ C(J,R), then Iα;ψ
a+

Iβ;ψ
a+

u(t) = Iα+β;ψ
a+

u(t), t ∈ J.

Lemma 2 ([6]). Let α > 0, The following holds:

If u ∈ C(J,R) then

CDα;ψ
a+

Iα;ψ
a+

u(t) = u(t), t ∈ J.

If u ∈ Cn(J,R), n− 1 < α < n. Then

Iα;ψ
a+

CDα;ψ
a+

u(t) = u(t)−

n−1∑

k=0

u
[k]
ψ (a)

k!
[ψ(t) − ψ(a)]k , t ∈ J.
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Lemma 3 ([6]). Let t > a, α ≥ 0, and β > 0. Then

• Iα;ψ
a+

(ψ(t)− ψ(a))β−1 = Γ(β)
Γ(β+α)(ψ(t) − ψ(a))β+α−1,

• CDα;ψ
a+

(ψ(t)− ψ(a))β−1 = Γ(β)
Γ(β−α) (ψ(t)− ψ(a))β−α−1,

• CDα;ψ
a+

(ψ(t)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

3. Main Results

Before starting and proving our main result we introduce the following

auxiliary lemma.

Lemma 4. Let 0 < α < 1, ρ > 0 and w ∈ C(J,R). Then the linear anti-

periodic boundary value problem

CDα,ψu(t) = σ(t), t ∈ J,

u(T ) = λu(η),
(4)

has a unique solution defined by

u(t) =
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 σ(t)ds

+
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1 σ(t)ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 σ(t)ds

}
.

(5)

Proof. Assume u satisfies (4). Then Lemma 2 implies that

u(t) = Iα;ψσ(t) + c1. (6)

The condition (4) implies that

u(T ) = Iα;ψσ(T ) + c1

u(η) = Iα;ψσ(η) + c1.

Thus,

c1 (1− λ) = λIα;ψσ(η))− Iα;ψσ(T )
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Consequently,

c1 =
1

Λ

{
λIα;ψσ(η)) − Iα;ψσ(T )

}
.

Where,

Λ = (1− λ) .

Finally, we obtain the solution in the equation (5). ���

Lemma 5. Assume that f : J × R × R → R is continuous. A function

u(t) solves the problem (1) if and only if it is a fixed-point of the operator

G : C(J,R) → C(J,R) defined by

Gu(t) =
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 f
(
s, u(s),CDα;ψ

a+
u(s)

)
ds

+
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1 f
(
s, u(s),CDα;ψ

a+
u(s)

)
ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 f
(
s, u(s),CDα;ψ

a+
u(s)

)
ds

}
. (7)

In the following subsections, we establish the existence and uniqueness

of solutions for the boundary value problem (1) by applying a variety of fixed

point theorems.

3.1. Uniqueness result via banach fixed point theorem

Theorem 1. Assume that f : J × R × R → R be a continuous function

satisfying the Lipschitz condition:

(H1) There exists L1 > 0 and 0 < L2 < 1 such that:

|f (t, u1, u2)− f (t, v1, v2)| ≤ L1 |u1 − v1|+ L2 |u2 − v2| ,

for t ∈ J and every ui, vi ∈ R, (i = 1, 2) If

Λ1 =
L1

1− L2

{
(ψ(T )− ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η) − ψ(s))α

Γ(α+ 1)
+

(ψ(T )− ψ(s))α

Γ(α+ 1)

}}

< 1

then the boundary value problem (1) has a unique solution on J.
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Proof. In the first step, we prove that GBr ⊆ Br where the operator G :

C(J,R) → C(J,R) defined by (7) and

Br = {u ∈ C(J,R), ‖u‖ ≤ r}

with choose r ≥ Λ2

1−Λ1
, where Λ1 < 1 and

Λ2 =
µ

1− L2

{
(ψ(T )− ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η) − ψ(s))α

Γ(α+ 1)
+
(ψ(T )− ψ(s))α

Γ(α+ 1)

}}

and sup l∈J |f(t, 0, 0)| := µ <∞. Set Ku(t) := f
(
t, u(t),CDαρ

a+
u(t)

)
. For any

u ∈ Sr, we have

|Gu(t)| ≤ sup
t∈J

|Gu(t)|

≤ sup
t∈J

{
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 |Ku(s)| ds

+
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1 |Ku(s)| ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 |Ku(s)| ds

}}
.

From (H1), we get

|Ku(s)| =
∣∣∣f

(
s, u(s),CDα;ψ

a+
u(s)

)∣∣∣

≤
∣∣∣f

(
s, u(s),CDα;ψ

a+
u(τ)

)
− f(s, 0, 0)

∣∣∣ + |f(τ, 0, 0)|

≤ L1 |u(s)|+ L2

∣∣∣CDα,ψ

a+
u(s)

∣∣∣+ µ

= L1r + L2 |Ku(s)|+ µ

which gives

|Ku(s)| ≤
(L1r + µ)

1− L2
(8)

Therefore,

|Gu(t)| ≤ sup
t∈J

{
(L1r + µ)

1− L2

1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 ds

+
(L1r + µ)

1− L2

1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η)− ψ(s))α−1 ds
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+
(L1r + µ)

1− L2

1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 ds

}}

≤
(L1r + µ)

1− L2

{
(ψ(T ) − ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η) − ψ(s))α

Γ(α+ 1)
+

(ψ(T )− ψ(s))α

Γ(α+ 1)

}}

=
L1r

1− L2

{
(ψ(T )− ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η) − ψ(s))α

Γ(α+ 1)
+

(ψ(T )− ψ(s))α

Γ(α+ 1)

}}

+
µ

1− L2

{
(ψ(T )− ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η)− ψ(s))α

Γ(α+ 1)
+

(ψ(T )− ψ(s))α

Γ(α+ 1)

}}

=Λ1r + Λ2 < r

‖Gu‖ < r (9)

which implies that Gu ∈ Br. Moreover, by (7), and Lammas 2, 3 we obtain

CDα·ρ
a+

Gu(t) = CDα;ρ
a+

Iαρ
a+

Ku(t) = Ku(t)

since Ku(·) is continuous on J, the operator CDαρ

a+
Gu(t) is continuous on J,

that is GBr ⊆ Br Next, we apply the Banach fixed point theorem to prove

that G has a fixed point. Indeed, it enough to show that G is contraction

map. Let u1, u2 ∈ C(J,R) and for t ∈ J. Then, we have

|Gu1(t)−Gu2(t)| ≤

{
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)−ψ(s))α−1 |Ku1(s)−Ku2(s)| ds

+
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η)−ψ(s))α−1 |Ku1(s)−Ku2(s)| ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )−ψ(s))α−1 |Ku1(s)−Ku2(s)| ds

}}

by (H1) , we get

|Ku1(s)−Ku2(s)| =
∣∣∣f

(
s, u1(s),

C Dα;ψ
a+

u1(s)
)
− f

(
s, u1(s),

CDα;ψ
a+

u2(s)
)∣∣∣

≤ L1 |u1 − u2|+ L2|
C Dα;ψ

a+
u1(s)−

CDα;ψ
a+

u2(s) |

= L1 |u1 − u2|+ L2 |Ku1(s)−Ku2(s)|

which implies

|Ku1(s)−Ku2(s)| ≤
L1

1− L2
|u1 − u2| . (10)
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Then

‖Gu1 − Gu2‖ ≤
L1

1− L2

{
(ψ(T ) − ψ(s))α

Γ(α+ 1)

+
1

Λ

{
λ (ψ(η)− ψ(s))α

Γ(α+ 1)
+

(ψ(T ) − ψ(s))α

Γ(α+ 1)

}}
‖u1 − u2‖ .

Consequently, ‖Gu1 − Gu2‖ ≤ Λ1 ‖u1 − u2‖ . Since Λ1 < 1, the operator

G is contraction mapping. Hence, we deduce by Banach contraction mapping

principle that the operator G has a unique fixed point, which corresponds

to a unique solution of the problem in Equation (1) on J . The proof is

completed. ���

3.2. Existence result via Kransnoselskii’s fixed point theorem

In the next existence result, we apply Krasnoselskii fixed point theorem

[28].

Theorem 2. Assume that (H1) holds. If

∆ :=
L1

1− L2

{
(ψ(T )− ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η) − ψ(s))α

Γ(α+ 1)
+
(ψ(T )− ψ(s))α

Γ(α+ 1)

}}

< 1

then the problem (1) has at least one solution on J.

Proof. Consider the operator G : C(J,R) → C(J,R) defined by (7). Define

the ball

Br0 := {u ∈ C(J,R) : ‖u‖ ≤ r0} .

Now we subdivide the operator G into two operators G1 and G2 on Br0 defined

by

G1u(t) =,
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1Ku(s)ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 Ku(s)ds

}

and
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G2u(t) =
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 Ku(s)ds.

Taking into account that G1 and G2 are defined on Br0 , and for any u ∈

C(J,R),

Gu(t) = G1u(t) + G2u(t), t ∈ J.

The proof will be divided into several steps:

Step 1: G1u1 + G2u2 ∈ Br0 for every u1, u2 ∈ Br0 . For u1 ∈ Br0 and using

the same arguments in (8), we get

|Ku1(τ)| ≤
(L1r0 + µ)

1− L2

Similarly, for u2 ∈ Br0 , we obain

|Ku2(τ)| ≤
(L1r0 + µ)

1− L2

Now, for u1, u2 ∈ Br0 and t ∈ J, we have

|G1u1(t) + G2u2(t)| ≤ |G1u1(t)|+ |G2u2(t)|

≤

{
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 |Ku2(s)| ds

+
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1 |Ku1(s)| ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 |Ku1(s)| ds

}}

=Λ1r0 + Λ2 < r0

which gives

‖G1u1 + G2u2‖ ≤ r0.

This proves that G1u1 + G2u2 ∈ Br0 for every u1, u2 ∈ Br0 .

Step 2: G1 is a contration mapping on Bn since G is contraction mapping

as in Theorem 1, then G1 is a contraction map too.

Step 3: The operator G2 is completely continuous on Br0 First, from the
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continuity of Ku(·), we conclude that the operator G2 is continuous. Next,

It is easy to verify that

‖G2u‖ ≤
L1r0 + µ

1− L2

(ψ(t)− ψ(s))α

Γ(α+ 1)
< r0

due to definitions of Λ and r0. This proves that G2 is uniformly bounded on

Br0 Finally, we prove that G2 maps bounded sets into equicontinuous sets of

C(J,R), i.e., (GBr0) is equicontinuous. We estimate the derivative of G2u(t)

∣∣(G2u)
′ (t)

∣∣ =
∣∣∣∣

1

Γ(α)

∫ t

a

ψ′(s) (ψ(t) − ψ(s))α−2 Ku(s)ds

∣∣∣∣

≤
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−2 |Ku(s)| ds

≤
L1r0 + µ

1− L2

(ψ(T )− ψ(s))α−1

Γ(α+ 1)
:= K.

Now, Let t1, t2 ∈ J, with t1 < t2 and for any u ∈ Bn.

Thus, we get

|G2u (t1)− G2u (t2)| =

∫ t2

t1

∣∣(G2u)
′ (s)

∣∣ ds ≤ K (t2 − t1) .

From the last estimate, we deduce that

|G2u (t1)− G2u (t2)| → 0 when t2 → t1, u ∈ Br0 .

This proves that G2 is equicontinuous on Br0 . In view of the foregoing

arguments, the Arzelá-Ascoli theorem applies and hence G2 is compact on

Br0 . Thus, the hypothesis of Krasnoselskii fixed point theorem is fulfilled,

which leads to the conclusion that there exists at least one solution on J . ���
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4. Ulam-Hyers Stability

In the recent section, we interested to studied UH and GUH of ψ–

Caputo-type for the problem (1) The following observations are taken from

[24, 27, 9]

Definition 4. The problem (1) is UH stable, if there exists a real number

Lf > 0, such that for each ε > 0 and for every solution ũ ∈ C(J,R) of the

inequality

∣∣∣CDα;ψ
a+

ũ(t)− f
(
t, ũ(t),CDα;ψ

a+
ũ(t)

)∣∣∣ ≤ ε, t ∈ J (11)

there exists a unique solution u ∈ C(J,R) of (1) with

|ũ(t)− u(t)| ≤ Lfε, t ∈ J.

Definition 5. The problem (1) is GUH stable if there exists ϕ ∈ C([0,∞),

[0,∞)) with ϕ(0) = 0, such that for each solution ū ∈ C(J,R) of the inequal-

ity
∣∣∣CDα;ψ

a+
ũ(t)− f

(
t, ũ(t),CDα;ψ

a+
ũ(t)

)∣∣∣ ≤ ε, t ∈ J (12)

there exists a unique solution u ∈ C(J,R) of (1) with

|ũ(t)− u(t)| ≤ ϕ(ε), t ∈ J.

Remark 1. Let α > 0. A function ũ ∈ C(J,R) is a solution of the inequality

(11) defined by

∣∣∣CDα;ψ
a+

ũ(t)− f
(
t, ũ(t),CDα;ψ

a+
ũ(t)

)∣∣∣ ≤ ε, t ∈ J.

If and only if there exist a function hũ ∈ C(J,R) such that

(1) |hǔ(t)| ≤ ε for all t ∈ J .

(2) Dα;ψ
a+

ũ(t) = f
(
t, ũ(t),C Dα;ψ

a+
ũ(t)

)
+ hũ(t), t ∈ J .

Lemma 6. Let ũ ∈ C(J,R) is a solution of the inequality (11). Then ũ is a

solution of the following integral inequality:

∣∣∣∣ũ(t)− wũ −
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 f
(
s, ũ(s),CDα;ψ

a+
ū(s)

)
ds

∣∣∣∣
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≤

{
(ψ(T )− ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η) − ψ(s))α

Γ(α+ 1)
+

(ψ(T )− ψ(s))α

Γ(α+ 1)

}}
ε

where

wũ =

{
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1 Ku(s)ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 Ku(s)ds

}}
. (13)

Proof. In view of Remark 1 and Theorem 1, we obtain

ũ(t) =
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)−ψ(s))α−1
[
f
(
s, ũ(s),CDα;ψ

a+
ũ(s)

)
+ hũ(s)

]
ds

+

{
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η)−ψ(s))α−1
[
f
(
s, ũ(s),CDα;ψ

a+
ũ(s)

)
+hũ(s)

]
ds

−
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1
[
f
(
s, ũ(s),CDα;ψ

a+
ũ(s)

)
+ hũ(s)

]
ds

}}
.

(14)

It follows that

∣∣∣∣ũ(t)− wũ −
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t) − ψ(s))α−1 f
(
s, ũ(s),CDα;ψ

a+
ũ(s)

)
ds

∣∣∣∣

≤
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 |hũ(s)| ds

+

{
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η)− ψ(s))α−1 |hũ(s)| ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 |hũ(s)| ds

}}

≤
ε

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 ds

+

{
ε

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η)− ψ(s))α−1 ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 ds

}}

≤

{
(ψ(T )− ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η)− ψ(s))α

Γ(α+ 1)
+

(ψ(T )− ψ(s))α

Γ(α+ 1)

}}
ε. (15)

���
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Theorem 3. If hypotheses of Theorem 1 are fulfilled. Then the problem (1)

is Ulam-Hyers stable.

Proof. Let ε > 0, and ũ ∈ C(J,R) be a function which satisfies the inequality

(11), and let u ∈ C(J,R) be the unique solution of the following ψ–Caputo

fractional differential equation

CDα;ρ
a+
u(t) = f

(
t, u(t),CDαρ

a+
u(t)

)
, t ∈ J (16)

with

u(η) = ũ(η), u(T ) = ũ(T ) (17)

where 0 < α < 1. Using Lemma 4, It is easily seen that u(·) satisfies the

integral equation

u(t) = wu +
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 f
(
s, u(s),CDα;ψ

a+
u(s)

)
ds

where

wu =

{
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1 f
(
s, u(s),CDα;ψ

a+
u(s)

)
ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 f
(
s, u(s),CDα;ψ

a+
u(s)

)
ds

}}
.

Applying Lemma 6, we obtain

∣∣∣∣ũ(t)−wũ−
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)−ψ(s))α−1 f
(
s, ũ(s),CDα;ψ

a+
ũ(s)

)
ds

∣∣∣∣ ≤ V ε

(18)

where

V :=

{
(ψ(T )− ψ(s))α

Γ(α+ 1)
+

1

Λ

{
λ (ψ(η)− ψ(s))α

Γ(α+ 1)
+

(ψ(T )− ψ(s))α

Γ(α+ 1)

}}
.

From (17) we can easily get that |wũ − wu| → 0. Indeed, from (H1)and (17),

we obtain that

|wũ−wu| =

∣∣∣∣
{
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1 f
(
s, ũ(τ),CDα;ψ

a+
ũ(s)

)
ds
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−
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 f
(
s, ũ(τ),CDα;ψ

a+
ũ(s)

)
ds

}}

−

{
1

Λ

{
λ

Γ(α)

∫ η

a

ψ′(s) (ψ(η) − ψ(s))α−1 f
(
s, u(s),CDα

a+u(s)
)
ds

+
1

Γ(α)

∫ T

a

ψ′(s) (ψ(T )− ψ(s))α−1 f
(
s, u(s),CDα

a+u(s)
)
ds

}}∣∣∣∣

≤
1

Λ

{
λIα;ψ

a+

∣∣∣f
(
η, ũ(η),CDα;ψ

a+
ũ(η)

)
− f

(
η, u(η),CDα;ψ

a+
u(η)

)∣∣∣

+Iα;ψ
a+

∣∣∣f
(
T, ũ(T ),CDα,ρ

a+
ũ(T )

)
− f

(
T, u(T ),CDα;ψ

a+
u(T )

)∣∣∣
}

since,
∣∣f

(
T, ũ(T ),CDαρ

a+
ũ(T )

)
− f

(
T, u(T ),CDαρ

a+
u(T )

)∣∣

≤ L1|u(T )− u(T )|+ L2|
CDα,ρ

a+
ũ(T )− CDαρ

a+
u(T )

≤
L1

1− L2
|ũ(T )− u(T )|.

Similarly, we obtain

∣∣f
(
η, ũ(η),CDαρ

a+
ũ(η)

)
− f

(
η, u(η),CDαρ

a+
u(T )

)∣∣ ≤ L1

1− L2
|ũ(η)−u(η)| (19)

which implies

|wũ − wu| ≤
L1

(1− L2)

1

Λ

{
λIαρ

a+
|ũ(η)− u(η)|+ Iαρ

a+
|ũ(η)− u(η)|

}
→ 0.

Hence,

u(t) = wu +
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 f
(
s, u(s),CDα;ψ

a+
u(s)

)
ds.

According to (18), (H1) and (19), we obtain

|ũ(t)− u(t)|

≤

∣∣∣∣ũ(t)− wũ −
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 f
(
s, ũ(s),CDα;ψ

a+
ũ(s)

)
ds

∣∣∣∣

+
1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1
∣∣∣f

(
s, ũ(s),CDα;ψ

a+
ũ(s)

)

−f
(
s, u(s),CDα;ψ

a+
u(s)

)∣∣∣ ds
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≤V ε+
L1

1− L2

1

Γ(α)

∫ t

a

ψ′(s) (ψ(t)− ψ(s))α−1 |ũ(s)− u(s)|ds.

By Lemma 2, there exists a constant Lf > 0 independent of ε such that

|ũ(t)− u(t)| ≤ Lfε (20)

Therefore the problem (1) is Ulam-Hyers stable. ���

Corollary 1. Under assumptions of Theorem 3, Assume that ϕ : R+ → R
+

such that ϕ(0) = 0. Then tne problem (4) is generalized Ulam-Hyers stable.

Proof. One can repeat the same processes in Theorem 3 with putting

Lfε = ϕ(ε), and ϕ(0) = 0, we conclude that

|ũ(t)− u(t)| ≤ ϕ(ε). ���

5. Example

This section is devoted to the illustration of the results derived in the

last section.

Example 1. Consider the following problem of implicit fractional differen-

tial equations involving ψ–Caputo type:





D
1

4
;t

0+
u(t) =



1

3
e
√
t+1 +

2 + |u(t)|+

∣∣∣∣D
1

2
;t

0+
u(t)

∣∣∣∣

8e2−t
(
1 + |u(t)| +

∣∣∣∣D
1

2
;t

0+
u(t)

∣∣∣∣
)


 , t ∈ [0, 1]

u(T ) = λu(η).

(21)

Where

α =
1

4
, λ =

3

4
, η =

1

2
, a = 0, T = 1, ψ(t) = t,

Set:

f(t, u, v) =

[
1

3
e
√
t+1 +

2 + u+ v

8e2−t(1 + u+ v)

]
, t ∈ [0, 1], u, v ∈ R

+.
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Clearly, the function f ∈ C([0, 1]). For each u1, v1, u2, v2 ∈ R
+ and t ∈ [0, 1]

|f(t, u, v)− f (t, u1, v1)| =

∣∣∣∣
2 + u1 + v1

8e2−t(1 + u1 + v1)
−

2 + u2 + v2
8e2−t (1 + u2 + v2)

∣∣∣∣

≤
1

8e2−t
(|u1 − u2|+ |v1 − v2|)

≤
1

8e
(|u1 − u2|+ |v1 − v2|) . (22)

Hence, the condition (H1) is satisfied with L1 = L2 = 1
8e . It is easy to

verify that

Λ1 =
L1

1− L2

{
1

Γ(α+ 1)
+

1

Λ

{
ληα

Γ(α+ 1)
+

1

Γ(α+ 1)

}}
< 1.

Clearly, the hypothesis of Theorem 1 are fulfilled and hence its conclusion

implies the existence of a unique solution of the problem in Equation (21)

on [0, 1].
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