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Abstract

We give a new proof on the pointwise asymptotic expansion for Bergman kernel
associated to k-th tensor power of a hermitian holomorphic line bundle on the points
where the curvature of the line bundle is positive and satisfies local spectral gap condition.
The main point is to introduce a suitable semi-classical symbol space and related symbolic
calculus inspired from recent work of Hsiao and Savale. Particularly, we establish the
existence of pointwise asymptotic expansion on the positive part for certain semi-positive

line bundles.

1. Introduction and the Main Result

Let L be a holomorphic line bundle over a complex manifold X with
dimc X = n. If we endow a positive, smooth (1,1)-form w on X, which
induces a Riemannian volume form dvy = w, := %, and a hermitian metric
h% on L given by local weight ¢, then they give rise to a scalar product on
C°(X, L), the space of smooth global sections for L with compact supports.
We then complete C2°(X, L) with respect to the scalar product to get a
Hilbert space L?‘W(X, L). The orthogonal projection IT : L?‘W(X, L) —
HY(X, L) onto the subspace of L2-integrable holomorphic sections of L is
called the Bergman projection, and its Schwartz kernel K (z,w) is called the

Bergman kernel. Tt is well-known that K (z,w) is a smoothing kernel.
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In general, it is difficult to calculate the Bergman kernel explicitly. How-
ever, when we replace L by its k-th tensor power L* := L®* and the her-
mitian metric ¢ by k¢, the large k-behavior of the Bergman kernel is rather
tractable and has important applications such as approximation of Kéhler
metrics by Fubini-Study metrics via the Kodaira map (@], , and @]),
existence of canonical Kéhler metrics (eg. [17], [19], and |9]-|10]), Berezin—
Toeplitz quantization (eg. M], ﬂﬁ], and [34]), and in physics |15].

If L is positive and X is compact, then a well-known asymptotic formula
asserts that there exist smooth functions b,(z) € C*°(X), for r € Ny, such
that for any N,l € N, there exists a constant C' := C; > 0 independent of
k satisfying

HKk(Z’Z) B ik"—rbr(x)HCl(X) < ORI, k> (1)
r=0

The existence of formula (I]) has been worked out in various generalities and
through a variety of methods over the last thirty years. The leading asymp-
totic was first proved independently by Tian (1990, M]) using Hérmander’s
L?-estimates and by Bouche (1990, [5]) using heat kernel. The full asymp-
totic was later developed independently by Catlin (1999, ﬂg]) and Zelditch
(1998, M]) using a result in CR geometry due to Boutet de Monvel and
Sjorstrand (1975, [2]). Later, Dai, Liu, and Ma (2006, @]) and Ma and
Marienscu (2006, [33]) obtained both diagonal and off-diagonal expansions
for generalized Bergman kernels for spin®-Dirac operators on compact sym-
plectic manifolds based on the analytic localization technique due to Bismut
and Lebeau. We refer the book of Ma and Marinescu @] and the references

therein for this approach.

If one drops the positive curvature assumption for L and assumes in-
stead that the curvature is non-degenerate with constant signature (ny,n_),
then Berman and Sjostrand (2007, ﬁ]) showed the similar asymptotic expan-
sions holds for orthogonal projection onto the space of harmonic (0, ¢)-form
A#%9(X, L*) of Kodaira Laplacian if X is compact and ¢ = n_. Indepen-
dently, Ma and Marinescu (2006, ﬂih) proved the analogous results in the
setting of spin®-Dirac operators on compact symplectic manifolds. In ﬂﬂ],
Hsiao and Marinescu (2014) proved that the spectral function for Kodaira
Laplacian always admits local asymptotic expansion for any hermitian holo-
morphic line bundle on the non-degenerate points of the curvature, and they
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deduce local asymptotic of Bergman kernel under the additional spectral gap
condition (cf. Definition [).

We now formulate the main result. Let (X,w) be a hermitian manifold
of complex dimension n, where w is a smooth, positive (1,1)-form on X,
inducing the hermitian structure on X. We denote (-|-),, by the hermitian
metric on 71°X induced by w. A canonical Riemannian volume form dvx
for (X,w) is given by w, := ‘7"1—7 Let L be a holomorphic line bundle on
X and set L* := L® for k € N. For any hermitian metric h on L, we
can define the Chern connection V on L with respect to A with curvature
RE(h) = (VF)2 € AM(X). We identify R(h) with the curvature operator
R (h) € C®(X,End(T"°X)) by

V=IRE(h) () (0 AT) = (RE (h)(2)ow)s, (2)

for any = € X, v,w € Ty'"X. We denote n(z),n_(z),no(x) by the number
of positive, negative, and zero eigenvalues of RL(h) at . For ¢ =0,...,n,
we let X(q) :={z € X :ny(x) =n—q,n_(z) = q,no(z) = 0}. Notice that
X(q) is an open set of X, for each ¢ € {0,1...,n}.

Locally, if s is a holomorphic trivialization of L over an open set U C
X, then the hermitian metric & is determined by |s|? = e2?, where ¢ €
C>=(U,R) is called the local weight of h. On the k-th tensor power L* of L,
h induces a natural hermitian metric h* on L* with local weight k¢. Let
(|")k¢ be the pointwise scalar product on the bundle L* and (:|-), s be
the inner product on the space C2°(X, L*) of compact supported smooth
sections of L¥, induced by w and h¥. We denote | - |14 and || - ||lu ks be the
pointwise and L?-norm associated to w and h*, and let L3(X, LF) be the
completion of C2°(X, L¥) with respect to || - |

w, k-

Let 0 : C®(X,LF) — A%(X,LF) be the Cauchy-Riemann operator
acting on smooth sections of L*, 9* be the formal adjoint of 9 with respect
to (*)w ke, and Dg?w := 0*0 be the Kodaira Laplacian acting on C*(X, L*)
(cf. ([@3). We denote by Dg)) by Gaffney extension of the Kodaira Laplacian
(cf. ﬂa, Proposition 3.1.2]). Let #°(X,L*) be the kernel of DIEO) and let
H,(CO) : L2(X, L¥) — #°(X, L) be the Bergman kernel for L*-sections.

To state our result, we first define local spectral gap property.
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Definition 1. For d € R and an open set D C X, we say that DU(JOZW has

local spectral gap condition of order d on D if there exists C > 0 and kg € N
such that for any u € C®(D, L), if k > ko,

H(I_H’(CO))un,kqs de H w k¢ lem (3)

where Hg)) is the Bergman projection from L?(X,LF) — #°(X, LF).

Next, we introduce the key ingredients in our approach. Namely, a kind

of semi-classical symbol space inspired from the recent work of @]

Definition 2. For m € R, a function a(z,y, k) with parameter k € N is in
S™(RY x RY) if

(i) a(z,y,k) € C®(R? x RY), for each k € N, and

(ii) for any(a, ) € N2¢, there exists | = [(a, 8) € N and ko € N such that

for any N € N, there exists a constant C' = C, g n(a) > 0 independent
of k satisfying

latisl (14 [Vka| + [VEy|)!
1+ Vk(z —y))N

8;;“65a(x,y, k)| < CE™ (4)

for any (x,y) € R? x R, any k > k.
Furthermore, we say a € §g? (RYxRY) if a € Sm (R? x R%) and there exists a
sequence a; € S(R? x R%) (cf. Definition Hl for the definition of S(R? x R%)),
for j € Ny, so that
N—

a(w,y,k) — > K" ta;(VEe,VEky) € §7F (R x RY), YN eEN. (5)

j=0

,_.

It is convenient to work in an equivalent set-up for which the norm
is defined by integral without parameter k. Let s be a local holomorphic
trivialization of L over an open set U C X, we can make the following

identification:

AY U LR — AU, u=s"®@ar a:=ac "
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so that for any u,v € L%’q(U, LFyn A%(U, LF),

() ko = /U (| B)we™ P, = /U (e ale™B) yw, =: (@|5).-

Let L§,(U,w) be the completion of L§ ,(U) with respect to (:|-),, defined

~

above. Clearly, above identification extends to an isometry L%vq(U, LF) =

Laq(U,w). We define the localized Bergman kernel with respect to s by
H,(fla = e*k%*kl'[,(f) (e*a @ s¥),

where s7% is the dual section of s* so that s7*(s*) = 1 on U. We denote
K}, s by the Schwartz kernel of the localized Bergman kernel 1I;, 5, called the

localized Bergman kernel.

We now can state the main result.

Theorem 1. Suppose X(0) # 0, say x € X(0). For any D C X(0) of
satisfying the spectral gap condition (cf. Definition[dl), there exists a trivial-
izing open set U @ D and a holomorphic coordinate z on U centered at x so

that on U, we have
p(2) K s (2, w)xa(w) € S(C" x C),
where p € CX(U), xr(2) := x(8k/>72), x € C(C") satisfying
suppx C B1(0), x =1 on By(0), p=1 near0,

and € € (0, ).

From (&), there exists a sequence a; € S (C™ x C™) such that for any
N e N,

p(2) K5 (2, w)xi(w Zk" 120, (Vkz, Viw) € 8"~ 75 (C" x C"). (6)

Furthermore, we can calculate the first coefficient of the expansion.

Theorem 2. In the setting of Theorem [, under the choice of holomorphic
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coordinates and holomorphic trivializations on U (cf. FactBl) such that
3(2) = d0(2) + O(|2*),  do(2) ==Y Niwl?'l’, Xiw >0,
i=1
=1 < _ »
w=uwo(2) +O(|z|), wo(z):= 5 Zldzj A dz?,
j:

the first coefficient in (@) is given by

2" N1z A noy. God oG 12 (i |2

where 4X\1 4, ..., 4\, are the eigenvalues of curvature operator RL(h) at
reX.

By (@), this means that given N € N, there exists [ = [(IN) € N such
that for any M > 0, there exists a constant C' = C(N, M) > 0 satisfying

N
j 1
p(2) s (2, 0) = Y K" a;(2,0)| < CK"= 5 (L)' M, 2] < kY2
7=0

If we further put z = 0, then we obtain a pointwise asymptotic for

o0
Kis(2) ~ ) K"79a(2)
j=0
in the sense that for any N € N,
N ; N+1
’Kk,s(O,O) -3 k”‘J/Qaj(O,O)’ <Ok

Jj=0

This establishes the local pointwise asymptotic of Bergman kernel function
on X (0) with local spectral gap condition.

1.1. Application of main results

We now give a digression on spectral gap condition given in Definition
[ and demonstrate that Theorem [ guarantees the existence of pointwise
asymptotic in many situations.
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First of all, it is clear that if ([B]) holds on D, it holds on any open subset
of D. Now, we say Df‘% " satisfies global spectral gap condition if ([B) holds
for D = X. When X is compact, by Hodge theorem, global spectral gap

condition is equivalent to
M (X, LF) = inf{) € Spec O}, A # 0} > Ok,
(0

w}w C {0}U[Ck?, 00). We now give
some known examples for spectral gap condition.

In other words, it is equivalent to Spec[]

Example 1 (cf. @], Theorem 1.5.5). Given a compact complex manifold
X, a positive line bundle L with respect to a hermitian metric h, by Nakano

inequality, there exists constants Cy, C7 > 0 such that for any k£ € N,
Spec Dc(uoawﬁ C {0} U (Cok — C1, 00).

Hence, DL(/JCZL " satisfies global spectral gap condition of order 1.

Example 2. In @], Siu conjectured the following ”eigenvalue conjecture”:
if X is compact and L is quasi-positive, then

inf A (X, Lk > o. (7)
Particularly, () implies that Dfuo’)k " satisfies global spectral gap of order IV,
for some N > 0. However, Donnelly ﬂﬂ] demonstrated that Siu’s conjecture
is false in general. Moreover, let S — X be the unit circle bundle of L, which
is a CR manifold, Donnelly also showed that () is true if the tangential
Cauchy-Riemann operator 0, has closed range. From this, one can deduce
that if L is a positive line bundle with semi-positive metric, then (7) is true
(with respect to the semi-positive metric). This particularly implies that ()
is true for any quasi-positive line bundle on compact Riemann surfaces.

Example 3. Let (L,h") be a semi-positive holomorphic line bundle over
a compact hermitian manifold (X,w) with dimc X = n. If we arrange the
eigenvalue of RV at x as 0 < pi(z) < -+ < pn(x), then pp(z) is a con-
tinuous function on X. Bouche é] showed that if [, ,u;6"dux < o0, then

10n+1
M (X, LF) > fT2n, Hence, Bouche condition implies that 09 | satisfies

w7k¢
10n+1
2n+1°

global spectral gap condition of order s =
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Now, we consider non-compact examples for spectral gap condition.

Example 4. Let (L, k") be a semi-positive holomorphic line bundle over a
complete Kéhler manifold (X,w) with dim¢ = X = n, w is a Kéhler metric
which is not necessarily complete. Then Demailly’s L?-estimate ﬂﬂ] implies
the following. If g € L§ (X, Kx ® L) satisfying dg = 0 and [y |g[%.dvx <
oo, where |g|pr () ::7infg/e/\n,lT*X®L %, then there exists f €
L*(X,L ® K)y) with 0f = g and

/ FPodvy < / g% dvy.
X X

From Demailly’s result, Hsiao and Marinescu in ﬂﬁ] proved that for any
precompact open set D € X(0), DU(JOL " has spectral gap of order 1 on D.

Example 5. Let (X,w) be a compact hermitian manifold. Assume (L, h") —
X is a smooth quasi-positive line bundle. Then by the solution of Grauert—
Riemenschneider conjecture (cf. @, Chapter2]), we know that X is a Mois-

chezon manifold and L is a big line bundle. From @, Lemma 2.3.6], L

admits a singular hermitian metric hSLing which is smooth outside an an-
alytic set ¥ and whose curvature is strictly positive current. Hsiao and
Marinescu in ﬂﬂ, Lemma 8.1, Theorem 8.2] proved that for any open set
DeX0)Nn(X\%), Dg)aw for the open manifold X \ ¥ has spectral gap of
order N = —sup,cp 2(¢(z) — ¢sing(x)), where ¢ and ¢ging are local weights
L L :
of h* and Piging: respectively.
These examples illustrates that Theorem [l asserts the existence of point-

wise asymptotic of Bergman kernel in more general situation.

2. Preliminaries

2.1. Standard notations

We denote N := {1,2,...} by the set of natural numbers and Ny :=
N U {0}. We adopt the following two multi-indices notations. For a multi-
index a = (a1, ...,0,) € N§j, we denote |a := > """ | ;. We adopt standard
notations such as a! = a1!--- o, !, 2%, and 0F. On the other hand, a n-tuple

J = (J1,---,Jq) € {1,...,n}? is called a strictly increasing multi-index of
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length ¢ if 1 < j; < --- < j, < n. For a differential g-form «, the local

expression in local coordinate z = (x!,... 2") is given by

! I
a= E ardx”,
H1=q

where ZT [|=g eans that summation is over strictly increasing multi-indices
I of length ¢. Also, we denote dm by the standard Lebesgue measure on
Euclidean spaces and B,(z) by the open ball with radius » > 0 and center
zeC

Let X be a complex manifold. We introduce some standard notations
of various function spaces. For any open subset U C X, we denote Ox (U)
by the space of holomorphic functions on U. In case of X = C", we denote
Ocn(U) by O(U). We also denote C*°(U) and C°(U) by the space of
smooth functions and the test functions on U, respectively. If £ — X is a
complex vector bundle, we denote C*°(U, E) and C2°(U, E) by the space of
smooth sections and its subspace whose elements having compact supports
in an open subset U C X. Similarly, we denote D'(U, E) and &'(U, E) by the
space of distribution sections of E over U and its subspace whose elements
having compact supports. For ¢t € R, we denote W!(U, E) by the Sobolev

spacell of order t of sections of E over U,

WL (U, E):={uecD(UE): puc WU E)Voc CXU)}, and
wt (U, E):=W,..(UE)NEU,E).

comp

2.2. Backgrounds in hermitian geometry

For a complex manifold X, we have a natural almost complex struc-
ture J : TX — TX from multiplication by /—1. Hence, J induces an
eigenspace decomposition TX @r C = T1OX @ T X, where 719X is the
v/—1-cigenspace of J and T%'X is the —y/—1-eigenspace of J. Also, J
induces an almost complex structure on 7*X. Hence, we also have the

eigenspace decomposition for complexified cotangent bundle 7% X ®@r C =

I The usual notation for L2-Sobolev space is H®. However, to avoid the confusion with cohomology
group, we denote it by W=s.
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/\1’0 X® /\0’1 X. Moreover, this extends to exterior algebra of complexified

cotangent bundle:

Nrxerc= P N"X,

ptg=r

where A\”? X is locally spanned by dz! Adz”, for any strictly increasing multi-
indices I € {1,...,n}P, J € {1,...,n}9. Wedenote A"(U) = C>®(U, \" T*X)
and AP4(U) = C°(U, A" X') by the space of smooth r-forms and smooth
(p, q)-forms on U, respectively.

Recall that a hermitian form on a complex manifold X is a smooth
(1,1)-form w € Ab(X) such that in a local holomorphic coordinate z =
(z',...,2") on a chart U of X,

n
w|, = g Z Hijdz' A d7, (8)
ij=1

where H(z) = (H;;(x))}';—; is a positive-definite hermitian matrix for any
x € U. It is well-known that a hermitian form w is equivalent to a Rieman-
nian metric g on the underlying real manifold X which the complex structure
is an isometry. We then extend g to a hermitian metric on T X ®p C, still
denoted by g,

1
g(?) ® )‘7 we M) = 5)‘ﬁg(v’ ’LU),
where v,w € T, X and A\, u € C. Thus, we can define a pointwise hermitian
inner product (-|-),, on AP4(X) induced from w.

Now, let a, 8 € AP4(X, LF) := C=(X, AP X ® L*) be two LF-valued
(p, q)-forms. Under a choice of trivialization s : U — L of L, we can write

a=f®sk =g s" We define

<a|5>w,¢> = <f|g>w€_2¢a (9)

where ¢ is the local weight of h associated to s. We then define a L*-
hermitian inner product (-|-) on AZ?(X, L*), the space of compact supported
(p, q)-forms valued in LF, by

(01B)os = /X (@B rsdix. (10)
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We write [|a? ko = (a|a)y kg and denote L2 (X, L*) by the completion of
APY(X, L*) with respect to the norm || - ||w ke-

Notation. We sometimes denote L2 (X, LF) by Li’kqs(/\p’qX ® LF) if we

wish to stress the choice of w and k.

Given a holomorphic vector bundle E over a complex manifold X, let
oF . AP9(X,E) — AP X E) be the Cauchy-Riemann operator. We
always choose the Chern connection V¥ on E which is compatible with a
given hermitian metric h¥ on E. For a holomorphic line bundle L — X with
a hermitian metric h on it, if (s,U) is holomorphic trivialization of L over
U and ¢ is the local weight of h determined by s. In this case, the curvature

form R™(h) of the Chern connection V := V¥ is locally given by

2¢
027

RL(h) = —9d1og e % = 200¢ = 2 Z —dz? A dE (11)

In particular, v/—1R"(h) is a closed, real (1,1)-form on X. We define the
curvature operator RY € End(A"° X) as in ([@).

Under simple change of coordinates and trivialized sections, one can

always make the local weight and hermitian form in a normal form.

Fact 3 (cf. M], Lemma I11,2.3). Let X be a complex manifold with hermitian
form w, L be a holomorphic line bundle on X with a hermitian metric h.
Fiz a point x € X, we can choose a local complex coordinate (z',...,2")

on an open neighborhood U C X of x and a holomorphic trivializing section
s € HY(U, L) such that

(i) 2'(z) = Oforz'zl... n,
(i) w(z) = Z” | Hij(2)dz" A dz; with Hi;(0) = 65, and
(iti) |s(2)[? = e 2) with local weight

=D il +0(=P),
i=1

where 4\ 4, ..., 4\, o are eigenvalues of RL(ac)

We usually denote ¢po(z) = Y1y Nix|2*|?.



12 YU-CHI HOU [March

We denote % 1= gL #wke . A%(X LF) — A%~1(X | L*) by the formal
adjoint of 0 with respect to (+|-)u ks Which is characterized by

(00| B)wks = (0" Bk, « € AYIX,LF), pe A% (X, LF).  (12)
Kodaira Laplacian for (L, h) is defined by

D(Q)

ke 1= 00" + 070 : A%(X, LF) — A%(X, LF). (13)

3. Asymptotic Expansion of Bergman Kernel

3.1. Localized set-up

As stated in the introduction, it is convenient to work in an equivalent

set-up for which the norms are defined by integrals without depending on k.

First of all, let  be a (0,1)-form. We denote €(n) :=nA-: AP T*X —
/\0’q+1 T X be the wedging 7 from the left and ¢(n) be its adjoint with respect
t0 (o Hence, for 51,7 € A%L(X), e(m)e(ne) + e(m)e(m) = (mm)uid.
Let e'(2),...,€e"(z) be an orthonormal frame for A™' X over U, Z1,...,Z,
be its dual basis for 7%'X. We can write Cauchy-Riemann operator 0 on

AU, LF) as

n

I(s* @ a) —sk®z (e)Zj + €(9e?)u(e?)) . (14)
Its formal adjoint with respect to the scalar product (:|-), ke is given by
(" @a)=5"® Z WZ; +2kZ;(9)) + e(e;)(0€”)) a, (15)

where Z; is the formal adjoint of Z; with respect to the inner product
(alB)w = [x(|B)wwn on APY(X). To put & and & in more symmetric

form, we make the following identification.

AY(U LR - A%, u=s"®ar a=ae*

16
A% — AU, LF), B sF @ et (16)
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This is a local unitary identification since for u,v € L%’q(X, L*)yné&(Xx,
A X @ LK),

<u|v)w,k¢> = / <a|5>w6_2k¢wn = / <€_k¢a’6_k¢5>w = (&|B)UJ7
U U
where u = s* ® a, v = s* ® 5. Then under this unitary identification, we get
I(s* @ efa) = s* @ "9y 4, (17)

where o € A%4(U) and

n

Ors = > (e(e)) ® (Z; + kZj(9)) + €(0e)u(e!)) = D + ke(Dg).  (18)

j=1
The formal adjoint 9} with respect to the local scalar product (-|-),, is given
by

n

G = (1) @ (Z] +KZ5(0) + (e )u(de))) = 0+ ku(D)  (19)

j=1

and satisfies
(" @ e"B) = F @ eM0; .8, B e AYTHU). (20)

We call 5k75 the localized Cauchy-Riemann operator with respect to s. The
localized Kodaira Laplacian with respect to s is then defined by

Dggi = 5;;’55]%5 + 5k7552’s. (21)
Of course, from (IT), [20)), we have
D(E;(I,)Ich(Sk ® ) = s ® ek(ﬁD,(cq’ia, a e AM(U). (22)

The localized Bergman projection Hg L L§ ,(U,w)NE'(U, A% X)) — A%(U)
is defined by

H,(ng,a = eflws*kﬂl(f) (ek¢a ® sk). (23)

Thus, we see that H,(cqi L Lg (U,w) N E'U, A% X)) — ker Dgfl. Let K,iqs) be
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the Schwartz kernel of H,(cqi, ie

€.

2) = /U KL (2, w) (a(w))wp (w),

We now give a local expression for localized Kodaira Laplacian.

Proposition 4. The localized Kodaira Laplacian D,(cqi satisfies

047 = 85 Oks + 0o

= Z 1@ (Z7 + kZij(9))(Z; + kZ;(6))
j=1

n Z (/)0 [z +kZi(0), Zf + kZ1(9)
J,l=1

+O0MW)(Z +kZ(¢)) + O()(Z" + kZ(9)) + O(1),

[March

(24)

(25)

where Z + kZ(¢) indicates a remainder term of the form > 1 a;j(2)(Z; +
kZ;(¢)) and aj(z) are some k-independent smooth functions, and similarly
for Z* + Z(¢). Also, O(1) indicates some zero order differential operators

which are independent of k.

Proof. By direct computation,

Now, we combine the first two terms as

(e(e/)e (e l) +L( l) ( j))((Zj +EZj(O)(Z] + kZi1(9)))

(26)

=(e|e! )((Z + kZ (¢))(Zi" +kZ1(9)) + e(e)u(e')[Z; + kZi(¢). 2} + kZi(9)]
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=01(Z; + kZj(O)(Z] + kZi(9)) + e(e))u(e")[Z; + kZ;(9), Z) + kZi(9)). O

We define the concept of k-negligible kernels or k-negligible operators.

Definition 3. A k-dependent continuous linear operator Ay, : L(QL q(X JLF) —
L% q(X LF) is k-negligible if it is smoothing for sufficiently large k and for any

a,fB e N ,any N € N, there exists a k-independent constant Cy g n,7, > 0
such that the smooth kernel A (z,y) of Ay satisfying

0207 Ap s4(x.y)| < Capnpk™ for k> 1, (27)

locally uniformly on any compact subset L. C U x V, where s,t are lo-
cal holomorphic trivialization of L over U,V respectively, and Ag(x,y) =
A si(z,y)s8(z) @ (t5)*(y). Here, (tF)* is the metric dual of t*. If so, we
denote Ay = 0mod O(k~>°) or Ay = 0mod O(k~°).

Notice that the condition of k-negligible is independent of the choice
of local trivializations s,t and local coordinates xz,y. Also, by Sobolev
embedding, A is k-negligible if and only if A; extends to an operator
from W2 (U, A" X @ L*) to WMV, A\*? X ® L*) with operator norm

comp loc

O(k=N), for any » € R, M, N € N.

3.2. Approximate Bergman kernel and semi-classical L?-estimates

Let z € X(0), let U C X(0) be a local trivialization open set and = € U.
We choose a local coordinate (U, z) centered at = and a local holomorphic
trivialization s of L on U so that Fact B holds. That is,

8() = d0(2) + O(1=P), oz sz ° AL >0
\/— (28)
w(z) =wo(2) +O0(|z]), wo(z) = T_ Zdzi NdZ, zel.
i=1

Identifying U as a bounded domain in C", we extend ¢ and w by <$ and @
to whole C™ by

b= Po+0k(d — P0), ©=wot+b(w—wo), and Gi(z) = (k> <z), (29)
N—_——— N—_———

1 w1
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where § € Cg°(C") is a cut-off function such that 6§ = 1 on By/,(0) and
supp® C B1(0). Thus, ¢; € C2(U,R), for any small € > 0. Since U C X (0),
we know that ¢ is strictly plruisubharmonic, i.e., there exists C' > 0 such that
%(z){jgl > C¢)?, for any ¢ € C\ {0}, any z € U. Thus, for sufficiently
large k, ¢ is strictly plurisubharmonic on C". Let @), := &"/n! = A(z)dm(z).

Then A(z) = 1 outside Bj.c-1/2(0). In other words,

o~

&)
I

w, 5: ¢ on Vi = B%k€_1/2<0)

wo, &= o on |z| > kY2

&)
Il

We then consider L*-space L§ ,(C", @) which is the completion of AP(Cm)

with respect to the L?-norm given by

(oo = [ (oo NGam),  f.g € A2(C).

Notation. In the remaining of this subsection, unless otherwise stated, we

will denote (-|-)z simply by (-|-) for the sake of brevity.

We now define the deformed Cauchy—Riemann operator 5k:$ = 0+
k:e(éqg) . A%(C) — A%9+L(C™) and its formal adjoint 5;5 = 0" + kw(é&)
with respect to (-|-)5. Hence, as before, the deformed Kodaira Laplacian

is then defined by

(@ _ 5 LR 5 A
A= 8,5015+ 50,5

Note that the analogous formula (I8]) and (I9) still hold:

(30)

Z (e(ej) ® (Z; + k:Zj(qg)) + 6(5ej)L(ej))

=1

03

<
Il
—
w
—_
~—

=~

) + e(el)u(de?) )

I
NE

5;5 (L(ej) ® (Z] + kZ;(

1

<.
Il

Also, 3037% = Ok.s, 5‘;’% = 7275, and Ag{)k(g = D,(cq’i on Vi. For z € C"\ U,

W = wp, and thus b;(z) = 5; = cz(z)
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From Proposition B, we sce that for ¢ > 1, o € A24(C™),

A o =Y 18 (2] +kZi(6))(Z; + kZ(9))a
j=1
+k D eeule) © (47~ 21 Z)) (@)
J)l=1

+O0(1)(Z + kZ(d)a+ O()(Z* + kZ(d))a + O(1)av.

)
)

+(00)(Z + kZ(@))a + O(l)a‘a) +(al0()(Z+k2(6))a)

)

)

Therefore, we get

(AL(:I) _afa) = (Z 1®(Z; + kZ;(6))(Z; + kZ;(6))a

j=1

+k (Z (e ® (2,71 — 2 Z;)(d)a

jl=1

>(Z4+kZ@)alP+k | 3 eeule) @ (27— 2 2;)(@)a
=1

_‘(0( WZ +kZ(9) a!a)H alO()(Z + k(& )H Daja)

where Z + kZ(¢) = S" 12+ kZ; (¢). By Cauchy-Schwartz inequality,

[(0)(Z +kZ(@)ala) | < % (

(
[©O)ala) | < 5

0z + k2@l + Flal?).
(10Mal? + fal?).

By the construction, these O(1) terms are supported in a compact set and
uniformly bounded in k. Hence, there exists a constant C’ > 0 independent

of k so that
lo)al* < C'al?,  0A)Z + kZ()al* < C'|I(Z + kZ($))al

and we choose € > 0 so that eC’ < 1. Also, since 5 is strictly plurisubhar-
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monic, there exists a k-independent constant Cy > 0 so that

n

S ele)ue) @ (27— 20 Z)(B)ala | = Collall®.

ji=1

Combining these estimates, we obtain

(81 sala) = (1= 5 ) (2 +kZ(@)al?

!
+ (Cok - 1) lall?, Va e A%29(C™).
€

Therefore, for sufficiently large k, there exists a constant C' independent of
k so that

(Afglaam) > Ckllal?2, VYae A%(CM), ¢> 1. (32)
We next consider Gaffney extension of A(AQL 3 and show that (32) holds for

<q) ’

any o € DomA , for ¢ > 1. Gaffney extension for deformed Kodaira

Laplacian on (0, q) forms is given by

1Oé€D0m :S’\q_l}

Dom Aéq)k = {aeDom(S )ﬁDom(Sj_l):SqaeDom(gg),S’\rq_

(9 . ._adtg ()

Aa’kga = Squa + S’q_ls’q_la, Vo € Dom Aa’ka

where §q is the maximal extension (cf. @, Lemma 3.1.1.]) of 5k$ : Abe(Cn)
— A%HL(C™) and SA’q‘r_l is the adjoint of S,_1. It is known that Gaffney
()

extension A %3 is a self-adjoint, non-negative operator (cf. @, Proposi-

’ ()

tion 3.1.2]). Moreover, since A™" . has the same principal symbol as usual

w,
Laplacian on C", we know that it is elliptic. By elliptic regularity, we know
2 st (@ .72 (on ~ (@) ; _
that the L*-projection P@,k$ : L ,(C,6y,) — ker Aa’ka is a smoothing op

erator and thus has smoothing Schwartz kernel P(])c . We call P(Q) % the

w
approzimate Bergman kernel for (0,q)-forms. Now, we show

Lemma 5 (Approximation Lemma). Let o € Dom SqﬂDom S;L_l - Laq((cn,
Wn). Then there exists a sequence {a;}32, C AP(C™) such that

laj — ol ||5k$aj — S|, H@*A 1aH — 0, asj— oco.
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Proof. First of all, we show that if x € C°(C" R) is a test function,
then for any « € Dom(S’\q) N Dom(@;fl), xa € Dom(gq) N Dom(ggfl). For
a € Dom(S,), we first claim that the Leibniz rule 8k$(xa) = X050 +
(“)k(gx A « holds in the distribution sense. To see this, observe that for any
B e A2y, 4 e AXY(Cn),

(N5 (xB)) =(0,57IxB) = (x0,718)

=0,5(x7) = Oax AB) = (YIX0p58) — (Ylea ., B);

ke X

where L(gk(gx) is the adjoint of 6<5k<$><) with respect to (+|-). Hence, 5Z$(XB) =
- ¢ )

X%ﬁ — L3k$X5 . From this, we deduce that

0,5(x)(B) = x(9;36) = a(xT;55)
= a(0;5(xB)) + alig, xP) = X,50(8) + 53X A a(B).

Hence, 5k$(xa) = Xékaa + 5@){ A « holds indeed in the distribution sense.
Therefore, since @ € Dom(S;) and x € Cg°(C"), 5k$a € L%’q(C”) and

5k$X = dx + kx0¢ € A2I(C"), we sec that 5]“3()08) € Lg,q+1((cn). Next, for

o€ Dom(S;Ll), we need to show that there exists constant C' > 0 such that
‘(5k$u|xa)‘ < Cllull, Yue Dom(gq_l).

However,

(5@14])(04)‘ < sup,ccn |X(z)|’(3k$u]a)’ < C'|Ju||. This shows that
xa € Dom(S@_l).

Now, we can choose x to belong to some partition of unity with compact
supports and decompose o = 2?21 x;o. It suffices to approximate each y ;o
and thus we may assume that a supports in some compact set K. Then we
apply the standard regularization technique by convoluting the coefficients
of o by the mollifiers p;(z) := j2"p(jz), where p is the standard modifier on
C™. The result then follows from the classical Lemma of Friedrichs (cf. ﬂﬂ]
Chapter VII, Lemma 3.3). O

From above approximation Lemma and ([B2]), we deduce that for ¢ > 1,

15,002 + 18 _,al? = Chllall?, Va € Dom 8, N Dom §}_,.
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For o € Dom ASL(E, we also have (A(Q)kacda) = (SArnga|a)+(§q_1SArq_1a|a) =

w
H§ al|? + H§T 1aH2. Thus, this implies that ([B2]) extends to all elements in

Dom A( 9
Gk’

(A(({Laa‘a) > Ck|lal|?*, Va € Dom Ac(?;q,)k:$’ q>1 (33)

From this, we can prove

Corollary 6. The deformed Kodaira Laplacian

Ag])lw Dom A( )A — L2 ,(C",©) is bijective and has a bounded inverse.

Proof. First, it is clear from (B3] that ker Agla = 0. For surjectivity, given
any 3 € L§ ,(C",@), we consider the a linear functional on im(Aéq)ka) given

by Kg(A(Q) a) (| 8), for any o € Dom A(Aq)k:&

w,
Injectivity of A(f)k(g implies that £g is well-defined. Also, ([B3]) implies
w7
1] < HC%‘ By Hahn-Banach Theorem, /3 extends to a bounded linear

functional on A(:I) ~ with the same norm. By Riesz representation Theorem,

w,

there exists y € L2 1(C™, @) with [ly]| < HﬁH such that (a[f) = Kg(A(qiwa)

(Aglgalfy), for any a € Dom A )kq?' In other words, v € Dom(Ag)qu)T =

w,

Dom ASL 3 and g = A(Aq)k(g'y. This shows the first assertion. The second

w,

assertion follows from (B3) that ||(A( ¢) 1 < Ck a

Now, we turn to the L2-existence Theorem for 51«5 on C".

Theorem 7. If o € L2 (C™, @) with 9, g = 0 in the distribution sense,

then u = 5%(&5;3@) Lo solves 8 gu=a cmd we have the L?-estimate

‘ = \/—

. o A-1 21 - — H* D ~
Proof. Since § := (Aa’ka) a € Dom(Aa,kqﬁ), thus u = 8k($5 € Dom 5‘k¢ C
L?(C™). The expression of u is legitimate. Then we have

5 AV 355 5= 5 5 .
Opgu = D558 akgb?akqﬁ @ — 0 30,35.
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Now, we claim that 5Z$ _k{sﬁ = 0. To see this, we first compute that

59 1) 3
%)aw k¢>5 5‘ A ﬁ 5‘k¢a—0.

Hence, 3;557%5 € ker 5k:$' Also, 8"&6 Aﬁ € ker 8*A clearly. Therefore,

x5 (1) n  _
8k$8k¢5 € ker A~ % From (B3], we know that ker A@ka = 0 and thus

0,~u = . As for the last statement,

ke
Hu\|2=(5,’;;( ) a0 5(A ,w)_la)
* _ 1
:<(AgkA) |9 dr5 (A0 ) la) = (805 ala) < Zllal. O

From above Theorem, we deduce the following “Hodge decomposition”:

Theorem 8. Let Py, 5 : 77( ) : L2(C™, &) — ker A

orthogonal projection. Then zt zs given by

4(173«5 = ker(éka) be the

P

ong =1 - 5;;5(&(1) )79 on (T, (34)

W,k
Proof. First of all, for u € C*(C"), we apply Theorem [ to v := 5‘ Ju

and thus ug = 8 (Aa k¢) 8k¢u solves 8k¢u0 = 6k¢

kerékq;. Also, for any u € ker(a ) (I — 3* ( (1) ) 18 )u =u =P, gl
This shows that

u. Therefore, u — ug 6

(= G580, 0" = = Fig(8g,5) "Dy

Finally, we compute

(u = uolug) =(uluo) — (uouo)
=(O5(D005) Begule) = (T80 0) Ol 5(A L5 T D 5w)
=((A0) )" Oquldgu) — (DL ) guldgu) = 0

* 1) 1 3
where 0, Aa (Aw k¢>) Gkgu = Gkgu as in the proof of Theorem[7l Therefore,

u—up L up and hence we conclude that u — 5'ZA(A( )kqs) 18k($u =P gt (]

Remark 1. Since PA ~is a bounded operator on L?(C",&), we actually
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know that the ([B4) holds on L?(C",&) by density argument.

3.3. Symbolic calculus and asymptotic sum

To establish the asymptotic expansion for Bergman kernel, we develop
the related symbol space and its asymptotic sum in this section. We first
define a space of functions which is rapidly decreasing off-diagonal (cf. @,
section 3.1]).

Definition 4. The space S(R?x R?) consists of functions a(z,y) € C>(R%x
RY) satisfying for any («, 3) € N2, there exists | = I(a, 3,a) € N such that
for any N > 0, there exists a constant C' = C, g n(a) > 0,

Lt o] + Jy)"?)

d d
Txm—y)™ V(z,y) € R x R™. (35)

. (
oe0ja(z,y)| < C

Equivalently, (35) means that for any «,3 € Ng, there exists | =
l(a, B) € N such that for any N > 0,

(1+ |o = y)™|020 ale, )|
sup
cwev (LFlal + )P

< 0. (36)

Thus, if there exists Ny > 0 such that ([B@) holds for N > Ny, then for
N < N07

1+ | = y)¥[050] a(z,y)| (L+ | =y |020] a(e, y)|
sup < sup

ower (L jz[+yDied) = Ser (+ ||+ [y)ied

< oQ.

In other words, it suffices to show the condition (B3] for sufficiently large V.

Remark 2. One observes that ifa € S (RYxR?), then for each fixed z,y € U,
a(x,-), a(-,y) € Z(R?), the Schwartz space of rapidly decreasing functions.
Hence, for any a, 3 € N&, any a € §(]Rd x R%), for fixed z,y € U, 8385a(x, )
and 5‘?85 a(+,y) are integrable in = and y, respectively.

Now, for a smooth function a(x,y,k) with parameter k, recall that in
Definition Bl we have defined a kind a semi-classical symbol space. For
m € R, a function a(z,y, k) € S™(R? x R?) if
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(i) a(z,y, k) € C°(R? x RY), for each k € N, and

(ii) for any(a, B) € N2%, there exists | = I(, 3,a) € N and ko € N such that
for any N > 0, there exists a constant C' = C,, g n(a) > 0,

L+ [Vka| + [VEy)"
(1+ Wk = y)hY

0200 a(z,y. k)| < Chmr L6

for any (z,y) € R? x R, any k > ko.

Similarly, one only needs to verify [B1) for N > Ny, for some Ny > 0, and
B7) shows that for each fixed z,y € RY, k € N, a(z, -, k),a(-,y, k) € 7 (R?).

Clearly, if a(z,y) € S(R? x R?), then a(vVkz, Vky) € SO(R? x R?) and
for any m € R, k™a(Vkx,Vky) € S™(R? x RY). Also, it is clear that
Sm(RE x RY) ¢ §™' (RE x RY) if m < m/.

We define the space of symbols of rapidly decreasing in k by §_°°(Rd X
RY) == ,,cr 5m(R% x RY). To define the asymptotic expansion in our case,

we need to establish the notion of asymptotic sum.

Theorem 9. Given any sequence {m;}32, with m; ~, —co and a;j(z,y,k) €
Smi (RYxRY), there exists a(x,y, k) € Smo (RYxRY) such that for any q € No,
there exists ko(q) € N such that if k > ko,

a(xz,y, k) — aj(z,y,k) € §mq+1(Rd X Rd). (38)

.
I MQ
o

Moreover, such a is uniquely modulo §—°°(R% x RY).
Proof. For any positive sequence {/; }?‘;0 with A; 7 oo, we define

Tik = Lo17(15/k).

For any «, 8 € Nd with |a| + 8| < j, there exists [; € N such that for any
N > 0, there exists a constant C' = C ; > 0 satisfying

1+ VL] + VEly)Y
A+ V@ -V

lagagaj(x,y, k)| < CN,jkijr% ( v,y € RY.
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Let €; be a positive sequence tending to 0 to be chosen later and

= L1
l‘ ya ZA] :E y7 AJ($7y7 k;) = Clj({L‘,y, k)X(k@iEJ:L‘?k;Z ]y)Tj,kH
7=0

(39)
where y € C°(R? x R?) such that 0 < x < 1, x(z,y) = 1 for |z|, |y| < 1,
and x(z,y) = 0 for |z|, |y| > 2
First of all, 7;, # 0 if and only if p; < k. Since p; oo, for each
fixed k, there exists only finitely many j with u; < k. Hence, for each fixed
k € N, B3) is a finite sum and hence a(z,y, k) € C°(R? x R%). Now, for
sufficiently large k so that 7;; = 1, we have

q
A,y k) — aj(z,y,k) = Y (u(k2 =, k2 ~5y) — Dag (2,5, k).
7=0

We claim that

Claim. For any a € S™(RxR%) and € > 0, a(z, y, k)(x(kz%_ex, k%_ey)—l) €
S—°(RIxRY), i.e., given any r € N, a(X(k:%*x, k%*y)—l) € ST (RExRY).

Proof of Claim. The key is the following. For any M € N, any «, 3 € Ng,
there exists C' = Cjr,q,8 > 0 such that

9200 x(@,y) 11 < Carap(le™ + yM), VayeC.  (40)

For the proof of {Q), for |z|,|y| < 1, 1 — x(z,y) = 0 and for |z|, |y| > 2,
1 — x(z,y) = 1, the estimate holds obviously. For 1 < |z, |y| < 2, we can
expand

dlol+1Bly

x@wy)-1= >, = — AL v+ > Rapla,y)a™y’,
0<la+181<M jal+181=M

where R,p € C®(R? x R?%). Therefore, lﬁg‘agx(x,y) — 1| < Capm(|z|M +
ly|M). Now, for any a, 3 € Nd, any N > 0,
020, a(1 = x(K'* =z, k'/>~cy))|

o / (o B)
< > Cl k=5 (1 + V2| + VEly|)
’ (1+ VE|z —y|)N

o'+ =a,B'+B" =03
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S| MO [H1B"] 4 | g —eyy[M+]a"[+18”]
(Ik=<al + k2"l )

(1+ VEla| + VRly|)" @2+
(1+ Ve = y)~

XC”,B”M

<Cgkm—eM+Hlal+l8|

)

where (o, f) = maxy/ 4qr=a,p+p7=p (1, 5) + |&"| + |B"| + M). Now, we
choose M so that eM > r and thus a(1 — X(k? o, k2 y)) € Sm—eM(Rd x
R?) ¢ §m (R x RY). 0

As aresult, A;(z,y, k) —aj(z,y, k) € §*°°(Rd x R?) for sufficiently large
k. On the other hand, for any j € N, any «, 8 € N with |a|+|8| < j, there
exists [; € N such that

i (L4 V| + V)Y
(1 + Vklz —y|)i

0200 a;] < Cjk™i~3

Now, we apply above estimates to

Aj(x,y, k) = a(z,y, k)x (k7 9, k3~ y)7;; and

1030, Aj (2, y, k)]

i (1+VEk kly|)
SCjkmj_%_Azﬁ( +\/_’$|—|—\/7’y|)] sup |<a;¢5.5x)<k%—ejx7k%—ejy”.

(L+VElz =yl |al+18l<i

Since x supports in |z|, |y| < 2, we see that VE|z|, VE|y| < 2k%. Thus,

9200 Ay (,y, k)| < CLR™ =545 (1 4 VRl — y|)~

We take €; so that k< L=l < for sufficiently large k and hence

230’
Cj{k‘mji%qrejlj < 27jk‘mj7%+1.

Given a, B € Nd, ¢ € N, we take N > max{|a| + 8], + 1} and my + 1 <

Mg+1-

0 C/kmj—%—i-ejlj

9B S A :
y(jz;v 2 ’_ +f|w—y|)ﬂ

N [o]+]8]
kMat1—% EMa+1——5 —

SJZN 21+ Rz — )N~ (1+ Vhlz — gD
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Hence,

N-1
70 D Al

J=q+1

a;;ag(a_zaj)\ <

q
j=0

) q
5?35(2Aj)‘+ 050, (aj—Aj)‘+
j=N =0

J

Since y € S(R? x R%), Aj € 5mi (R x R%) (cf. Lemma ). Also, previ-
ous argument and above claim show that > 7%\ A; € Smat1 (R x RY) and
> izolaj — Aj) € S—°(R? x RY), we see that

_Q

lal-+181 (1 + Wkz| + |VEy|)HeH)
1+ Vklz —y)¥

050 (a =Y aj)| < Co gk~
=0

In other words, a — Z?’:o a; € Gma+1 0

If a and {a;} satisfy the conclusion of the Theorem [@ we then write
a ~ Z?io aj(z,y,k) and call a the asymptotic sum for {a;}32,. Moreover,
we define:

Definition 5. The space §g’f(Rd x R%) of classical symbol of order m consists
of function a(x,y,k) € §m(Rd x RY) such that there exists a sequence a; €
§(Rd‘ x RY) for j € Ny satisfying

o

a(x,y, k) ~ Z k:mfgaj(\/gx, VEy) (41)
§=0
Next, we define the quantization on symbol space gm(Rd X Rd).
Definition 6. Given a € 5™(R% x R%), we define a k-dependent continuous
linear operator Opy(a) € L™(R?) by

Om(a)(w(a) = [ aley.Kyuly)dm(). (12)

A k-dependent continuous linear operator A, : C°(R") — D'(R?) is in the
class L™(RY) if A = Opy(a) for some a(z,y, k) € S™(RY x RY).

In particular, A, € L™(R?) implies the Schwartz kernel Ka, (z,y) =
a(z,y,k) € C°(R? x RY). Thus, Ay € L™(R?) is a smoothing operator for
any k € N. Moreover, if a € g’m(Rd x R?), then Opg(a) is k-negligible in
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the sense of Definition [B] obviously. Hence, we may extend the Definition
by Ay € Em(Rd) if there exists a € §m(Rd x R?) such that Ay — Opg(a) =
Opr(ar) with a; € S (R? x RY).

We also define the subclass Eg’f(Rd) c L™(RY) by Ay € EZ’[‘(RUZ) if
Ay — Opg(a) = Opg(ay), for some a € S’Z?(]Rd x R%) and a; € 5~ (R? x RY).
For Ax = Opg(a) € Eg’f(Rd), we then define the principal symbol o(Ay) by
the leading term ag(z,y) € S(R? x R?) in the asymptotic sum (@I).

Theorem 10. If A, = Opi(a) € L™(RY), By, = Opy(b) € L™ (RY), then
(i) The formal adjoint A} € L™(RY) with A; = Opy(a*), where
a*(z,y, k) = a(y,z, k).
(ii) Ay o By € Emﬂn’*%(Rd x RY) with Ay o By, = Opy(a#tb), where

(a#b)(z,y, k) ::/ a(z,t, k)b(t,y, k)dm(t), (43)

R4

ie., ifa € ST(RIXRY), be ST (R x RY), then a#tb € SmH™ ~2 (R x
R%).

Proof. For (i), for u,v € CX(R?), the formal adjoint A} is given by
(Ag(u)|v) = (u|Agv). Hence, we compute Aj explicitly as

Gvado) = [ ([ utnyim(n) ) oagan(e)

d Rd
_ / a(z,y, k)u(y)v(@)dm(y)dm(z)
R4 JRA

= [ utw [ oG s Reta)am(a)dm(y
= [ AT

This implies that (A;v)(z) = [ga a(y, z, k)v(y)dm(y) and thus A} = Op,-,
where a*(z,y, k) := a(y, z, k). Obviously, a* € ggf(Rd x RY) if a is.

For (ii), for each f € C°(R?), (Byf)(t) = [pa b(t,y, k) f(y)dy and thus

(A 0 By) (/) () = /

R4

ot ) [ 8.5l ) ()
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Observe that for fixed z € R?, k € N, a(x,t, k)b(t,y, k) f(y) is integrable in
t and y. Therefore, by Fubini-Tonelli Theorem, we then have

(o B)@ = [ ([ et bptepkyim®) f)dmiy
~ [t R) f@)am),

We then see that ApoBj = Opgxp. Now, we show that a#b € gm+m’—5 (R x
R9). To see this, for any «, 8 € N,

ag‘a(x,t,k)agb(t,y,k) dm(t)

agb
SCa,ﬂ,Nkm+m'+7‘a|§|m

. (1 VL2l +VEI O (1 [Vt + [V ) O
rt (1+ VR =)V 1+ V(= y))Y

m(t)

We make the change of variable s = v/kt and thus dm(s) = k%dm(t). This

implies

020; (a##b)|

(1 + VEla] + )0 (1 +]s] + [VEg)' )
(+Whe—s)¥ (1 |s = VE))Y

Let I(«, 8) = max{l(a,0),1'(0, 8)}. We observe that for any M > 0,

d | la|+[8]
<CE™T Rt / m(s).
Rd

(1+ Wk = s)M (1 + [Viy — s)M
> (1+ V(e = y)| + Vha — s|[Vky — s)™

—(1+ Vi — y)h (1 o Wha = slivVhy 5') > (14 VEz - y)™

L+ VElz —y]
Hence, by taking M = N/2 and u = s — Vkz, we can write

0500 (a#tb)

C
T (1 V| -y N2

[ (o YFlel s e R+ e
ds
re (14 [VEx — s)N2(1 + [Vky — s|)N/2
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= Ry

Hence, there exists Ny = Ny(«, 3,d) such that if N > Ny, the integral

/ (14+2VE| 2|+ | u) B (14 E|z| +VE|y| + |u]) (>
Rd (14 |u|)N/2

converges. By expanding the numerator of the integrand, we can find I'(«, )

so that for any N > Ny,

— g let31 (1 + VRla| + VRl @)
(1+ VAl — y)V2

207 (a#)| < Co g K™
Thus, a#b € §m+m,7%(Rd x RY). O

3.4. Asymptotic expansion of approximate kernel

We now establish the asymptotic expansion of approximate Bergman

kernel Pﬁo;)gg through the symbolic calculus presented in section 3.3.
w

We first consider the case PUS )k¢ , where ¢ = >0, Njz|#)?, wo =
@ > dz? Ndz7, which is the orthogonal projection L%’q((C") = L%’q((C",

wo) — ker Ay keo, Where the analogous Laplacian Al(jo) koo 1S glven by

(q) Pp— 7*7 2 3 7*7
AWOJ@O = ak(;f)(’&kqso + 8k¢>08k<;)07

gy = O + ke(Dgy), and 5;;;’;0 is the formal adjoint with respect to the

L?-inner product

(alB)o ZIII J/ arBrdm(z

Let 0x(2) = ﬁ be the scaling map on C" with inverse 0, ' (z) = v/kz. Then
for u e C(C™),

n

Ok Do Oy u(2) = Ok (Z (\/Eg:i (Vkz) + k?ﬁ? (z)u(\/Ez)) dzi)
i=1

(n ( i = (V) + kA xzu(fz))dz>

=1
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L . y
=0y, (\/EZ (g(\/gz) + \/EAi,xz’u(\/Ez)) dz’)
=1
= V610, (Ogou) (2) = VEDgyu(z).

Therefore, we can deduce that

/) 1 /) ak,wo _ 1 ak,wo
Hence, from (@) we get
1
D00k = 7.0k Dy ko (45)

k
Using @), if {Uj(z)}?zl, where d € Ny U {oo}, is an orthonormal ba-
sis of ker Ay, kg, With respect to (:]-)u,, then dro; satisfies Ay 400605 =
%&cAwo,Im)QUj = 0. Their inner product is given by

(6kail5ko’j)w0:/(C”cskai(w)ékaj(w)dm(w):k:"/ oi(w)oj(w)dm(w) =k"d;;.

n

This shows that {k~2dy0; };l:l is an orthonormal basis for ker Ay 4. Since
P4, s the kernel of orthogonal projection onto ker A, rg4,, we know

d
z

J

For P, 4,, we can compute it explicitly.

Proposition 11. The approxzimate Bergman kernel pY

oo (22 W) 18 given by

PADSIPRERD . i G2 (i |2
(0) (Z7w) _ 1,z n,x 62?:1 )\Jﬁz(gzjwyﬂzy‘ —|wi| )
w07¢0 7Tn

Proof. First, we consider the trivial line bundle L = C x C" over C"
with weight llliL = ¢72%0, Its L2-section can be identified as the weighted
L?-space L?(C™, e~2%0dm), and the subspace of holomorphic sections is iden-

tified the subspace F, known as Bargmann—Fock space, consisting of entire
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functions f satisfying
oS AL |42 5
19120e0 = [ 1P 8 () < oo, 0f =0, Ve F.
(CTL

We denote Kpp(z,w) by the Schwartz kernel of the orthogonal projection
Hpr : L?(C", L) — H°(X, L), i.e.,
(Iprf)(2) = f(z) = g Kgr(z,w)(f(w))dm(w), Vfe H(X,L).

2 Ao Ans 250 A (207 | )

ﬂ—TL

Claim. KBF‘(Z,'UJ) =

Proof. For multi-index a = (v, ..., qy) € NB welet 2 1= (1)1 ... (27)2,
Clearly, 9(z%) = 0, for any o € N§. Hence, 2* € O(C"). For a, 3 € N,
using polar coordinate 2/ = rje_*/__wﬂ' and Fubini—Torelli Theorem,

<Za|zﬁ)w0,¢>o :/ Za2’36722?=1)‘17j|2j\2dm

Cnr

n 00 2m ‘ 1 5
:H [/ / r;zj+ﬂ]+ O e
i Lo Jo

If oj # Bj, then f027r e\/*_l(afﬂf)efdej = 0. Hence, (2%,2%) = 0 if a # B.
Now, observe that for [ € N,

o1 o 1 o, T+ 4
/0 reTe dr—72(2)\)l+1/0 u'e du—2(2)\)l+1—2(2)\)l+1, (47)

where u = 2\r2. Therefore, the square of norm of 2% is given by

o B 21! et
||Z Hwo,qb() - ]1_11 Q(QAj’x)ajJrl - 2\a|+n)\a+17

j+1 lor|+n yat1 .
where A2t .= [T, )\?gj . As a result, {\Ifa =4/ %zo‘} is an

aeNY
orthonormal basis for F and Kpp(z,w) is given by

Kpp(z,w) = Y We(2)Tq(w)e %0,

aeNj
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We then compute that

abtmyatt
Kpr(z,w) = E L et 2 Malw]
mal
aeNg

X 5d+n )
2 d' n . 2
= = (Az) we 2 L= Al

N ! al
d=1 |a|=d

_ 2" Ma Ang o g (T i 2) O
iak ’

Now, observe that L?(C", e > Z;'1=1’\j”f‘Zj‘chm) and L?(C") is isometric

via u — ue?(*). As in section 3.1, we know that
BlueXi=1 =217y = (Ziai Xial g, 4y v e Coo(Cm).

Therefore, Py, 4, and llgp are related by P, 4, = e~ IIgpe®, and their

Schwartz kernels have the relation

Py ¢0 (2, w) :e*%(Z)KBF(z,w)e%(w) (48)
:”Lir—nwezjzl N (2299 |29 PP | [2) 0

Our goal is to obtain asymptotic of P, Ko Recall that in (29), $ =
¢o + ¢1 with ¢1 € C°(C™). We consider e—k(@=00)y = ¢=kd1y. Notice that
¢1 € C°(C™) implies that

/ lu2et%*1dm(z) < co, Vk e N,u e L?(C").

Hence, by similar argument as in Proposition [, the map u +— ue ¥
defines an isometry on L?*(C") — L?(C") which maps ker dxy, bijectively
onto ker 5,“; with inverse map v — €*®1v. On the other hand, we consider
the change of base metric from wy to @. Observe that & = wg + wy with wq
supports in Bk“% (0). This implies that the L?-norm || - ||, and || - ||z are
equivalent and thus L?(C") = L?(C",&). We may regard P@,I«E : L2(C") —
ker 8k$'
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We then define an intermediate operator ﬁwo’k% : L2(C") — L3(C") by
ﬁwo,k% =e o Poso ko © ekor (49)

By uniqueness of Schwartz kernel, we see that its Schwartz kernel ﬁwo,k% (z,w)

is given by
ﬁUJmk’(ﬁO(zv w) = eikm(Z)PwoJf(ﬁo (2, w)ekm(w)' (50)

Now, we observe that

Lemma 12. P@,k$ = P ko © P@,k$ and Pug kgo = ,Pa,kg © Fuwo,keo -

Proof. First, it is easy to see that the map u — e *®14 sends ker 51«;50 onto
to ker 0, sand u eF®1y sends ker 8 onto to ker Ogg,. By ([B4) and above

observatlon,

Puso,kso — P g © Puokso = = Py 1.3) © Pug,keo

- 1) 15 _
=050 2 B P ko = 0;

) —k k
7)@,1«5 - Pwo,k¢>0 °© P@,kz$ =k (I - Pwo,k¢0)e o P@,k$
_k» * (1) —153 k o
o ak;;) (Awo,kqso) ak¢>0€ ¢1P@,k$ =0. O

Moreover, let ﬁzoak , be the formal adjoint of ﬁwo,k% with respect to
the norm (+|-)5. By direct computation, we know that its Schwartz kernel is

given by

Pw*oujkqso(z w) = A_l(z)ek(ﬁl(z)Pkm(zvw)e_kqbl(w))\(w)v (51)

where \ is the density of £ o, le. Wy = Adm. If we define R := 77 o ko
'Pwo koo to measure the extent which 'Pw0 kao 1s not formally self-adjoint with

respect to (+|-)g, then its Schwartz kernel is given by
R(2,0) = Pag gy (2,0) (A7 (2)Aw)eh? (7kor0)  chor(m)har()) - (59)
Now, if we take adjoint in the first formula in Lemma [I2] we get

7)@ k¢ Pa k¢) PUJO7]€¢O 7)@ k¢ (PUJ()7I€¢() + R) - ,Pw07k¢0 + P@,ka e} R,
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where we use the second formula in Lemma [[2]in the last line. We then get

~

P = R) = Pug o (53)

Now, for any M € N, if we multiply (I +R + R? 4 --- + RM~1) from the
right on the both sides of (53]), then we obtain

Puso,kgo T Puso,kgo © R+ -+ + Py kg © RM= 4 P@,k$ o RM = 7’@,1«5' (54)

(B4)) is the key observation for establishing asymptotic expansion for Pa,k$

near (0,0). We will now employ the symbolic calculus developed in previous
section to (B4)) to achieve this. First of all, from Proposition [[1] and

279 — |2 — [ )? = — |27 —w?)? + 2v/—1ImP W, Vz,we C",

we know that

PW07¢O(Z7w) = Meiz

y 1)\J7m|z w |2+2\/ 1Imz7w c S((Cn % (Cn)

Therefore, Py kg (2,w) = k" Py sy (Vkz, VEw) € §$((C” x C™). Now, we
show

Lemma 13. For e € [0,1/6), we have

|

Py ko (z,0) € SB(C" x C"),  R(z,w) € S}y ?(C" x C).
Proof. By our choice of ¢; and w; as in ([29), we know that for |z|, |w| >
ke1/2, ﬁwo,kqso(z,w) = Py keo(2,w) € §3(C” x C"). For |z|, |w| < k<1/2,
since ¢1(z) = O(|z]?), |ko1(2)] < Ckl|z|> < Ck~'V2|VEkz]3. Since |2| <
ke=1/2, we see that |k¢y(z)| < Ck?~1/2. This shows that

1

ko1@)—kd1(y) _1| < 0ek* T2 gy k3 kg3 e VI B
< P (klz["+klyl") < , (55)

1
||, ly| <k~ 2t

where z,y are the underlying real coordinates for z and w. Hence, if € €
[0, %), then 3¢ — % < 0. Therefore, P, kg, € S™(C™ x C"). Furthermore,

k(@) ko1 (y) _ i (ko1 (z) ;!kfbl ()"

=1
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1
S [ Ihor(a) = kon ()] Vel (0 g

A<Jk(N+1)(36—1/2)6k3671/2. -

This shows that ﬁwo’kqso € §$((C” x C"). Now, if we expand A(x)A"!(y) in

Taylor expansion:

— 0200 ( A))(0,0)
- =14 Y |ZB:| (a(+)5)< ¥))(0,0) P
J=1 la|+|8|=j
1 aqBy—1
+N/ a-pNt 3 0z 0y (A (?Lkiy)ﬁ))(!tw )y’

laf+|Bl=N

This shows that

My) N~ 0205 A (2)A\())(0,0) 8
e Zk agﬁj'j RN (Vha)* (Vhy)

|2

— Ok~ %). (57)

Hence, we get

Rz, w)| <|Po (22 0)] (A (2)A(w) -
4 ‘6k¢1(z)—k¢1(w) _ okpr(w)=kg1(2)

k1(2) =1 (w) ‘

)

1
AL () (w) — 1‘(1 + CE3e1/2672)

< Pagion (2 0)
st hy,
The derivative estimate of R follows similarly as above. This shows that
R € §”_1%(C” x C") if € € [0,%). Moreover, (B6) and (57) shows that
Re S 2(Cr xCm). 0
From Theorem [0, we know that for any j € N and R; := R#J,

Py koot Ry € S2(Cm x €.

Before proving our main result for this section, we need to first show that

the remainder kernel Pa,k$#R#j for P 150 RJ in (B4 is well-defined.
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Lemma 14. Let R; := R#J be the Schwartz kernel of R7. Then P ko © RJ
is well-defined as a smoothing operator with smoothing kernel P ka#Rj, for

any j € N.

Proof. For any «, 8 € N3" any 0, yo € C*, by Cauchy—Schwartz inequality,

205 [ Py alen, )R o))

< [ 102, (o0 005 R )l dm(u)

< ([ epasstronpan) ([ 105, Pam)

First of all, since R; € Sn=3/2(C™ x C"), we know that R;i(-,y) € Z(R*™)
for fixed yo and thus (5‘5Rj)(~,y0) € L*(C™), for any 8 € N2". On the other
hand, since || - ||, and || - ||z are equivalent, there exists a constant C' > 0

such that
/C 102 P (o, ) Pdm(u <c/ 0P (0, 0)Bn(u)
=C0,0, Py, 5(x0,0) < 00.

It is clear that P- k¢>#RJ is the Schwartz kernel of 71 3° RJ and thus
73A 30 RJ is a smoothing operator, for PA #RJ is smooth. O

Hence, the kernel version of (54) is well-defined:

Pogigo + Pag koo R + -+ + Pug rgo#Rar—1 + By kot M

=P, 5 VM eN. (58)

Also, we need the following simple observation. Let x, x € C°(C") with
supp x C B1(0), suppx C B2(0), X =1 on suppy, x = 1 on By/(0).
and set y(2) == x(8k'/?7¢2) and Yi(2) := X(8k/?~¢2).

Lemma 15. For any a € S™(C"xC"), Xi(x)a(z, y, k)xi(y) € S™(C"xC™).
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Proof. For any «, 5 € Njj, we estimate

050 a(z, y, k)Xk(@)xk W) < Cap > 109 Xkll0) xll03 =0 al.
o' <a,f'<pB
Since a € 3\7”’1((:’"b><(:n)7 for each a—a/, B— 3, there exists l(a—o/, B—') € N
such that for any N € N, for any x,y € C", we have

0808 a(x, y, k)|

e 2=z (14 Vo] + VRl A
(1+ VE|z —y|)N

S Ca_a/7ﬁ_ﬁl7N

On the other hand, we have |9 Y| < Cokl*'1(1/2=¢) and
|65Xk’ < Cg/k‘5’|(1/2_6). Hence, we conclude that

lol+15] (1 4+ VE|z| + VE|y| ) @P)

< Ca, ,Nkm+ ) vx??J € Cna
’ (1+ Vilz —y)N
where [(a, 8) := max{l(a« — o/, = ') : &/ <, 8 < S}. O
We are ready to establish the asymptotic expansion of P kg near (0,0).

Theorem 16. For e € [0,1/6), we have

ik(x)PQk(g(m,y)Xk(y) € §3(C” x C"),

where Xk, X as above.

Proof. We first show that X P KXk € Sn (C™ x C™). For z,w in a compact
set K of 0 € C", by standard scaling technique (cf. ﬂﬁ, Theorem 4.3]), one
can prove that for any o € NZ*, there exists a constant C = Cx > 0 such

that any u € ker 5%,

ntla]

|(05u)(2)| < Caxk™2 |ullg, VzeK.

Let {W¥; };l’“:l be an orthonormal basis of ker A, = with respect to (|)s- Fix
o € NZ" and zp € K, we may assume that Z;l’“:l |09V ;(x0)|? # 0. We then
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set

u(z) = T

) @) (@) ¥ (=)
(e I, (o))
¥

Since P (z w) = Z W,;(2)¥;(w) is smooth, the sum Z;l’“:l 090 ; () 2

converges, and thus u € ker A and ||ul|3 = 1. By above argument, there

wo,k¢
exists a constant Coé, K so that

Do 12ws(o)? | = 1(9Fu)(z0)] < Co,

Since |0¢ 8 (P k¢)(1:0,1:0)| is dominated by
1/2 1/2
(525 10205 (0)2) (325105 (x)2)

105205 (P, 5) (w0, 20)| < Ca sk (59)

and the same estimates holds for any z € K with the same constant C, .

Now, for off-diagonal estimates, we notice that |z| < 1k=1/2+¢ |w| <
%k*1/2+6. Therefore, |z — w| < gk*1/2+6. For any M € N, we now multiply

Xk(z)xk(y) on the both sides of ([BS):

Xk (%) By (2, y)xk ()
M-—1

=Xk () (P 5 Ran) (@, 9) Xk (1) + > Xn(@) Pug koo Ry (2, 9) Xk (1),
7=0

By Lemma [I5], we know that )?k,ISWO koo FRjXK € §”_j/2((C" x C™). Hence,
given any N € N, to estimate (1 + vVk|z — w)N X P, k:qka’ it remains to
estimate (1 + vk|z — w|)N Xk P, ka#Rarxk| We observe that

(14 VB =) VTu(a)| [ Py R w)m(a )

B B
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5. AN i 12 / (14+VE|u|+VE|w|)? 1/2
<(1+2 P - d .
—( +8k> Crk P k(2 2)] ( o (14 VEu — w|)2L m<u))

By above on-diagonal estimates, we know that | P k<$<z’ 2)|1/?2 < k™2, Now,

as in the proof of Theorem [I0, we make the change of variable t = Vku —

Vikw:

(1 + VEu| + VE|w])* o [ @[]+ 2vEw])?
/n 03 Viu_wpze <K / 1+ N2

dm(t).

By choosing L =1 + 2n, we get

(14 VB2 = w) V54 (2)]| (P 5 Ban) (2, w) ()
<Cpi(1 + gke)Nk:”*M/Q(l + V)
If we choose M > 2eN, then k=M/2(1 + %ke)N < 2N, Similar estimate

works for (14 vk|z — w|)N|8§85(§Zk(Pa ka#RM)Xk” with the same M but
now [ may depends on «,3 € NZ". Hence, we conclude that Xk Py Xk €
Sn(C™ x C™).

Finally, we show that Xz P KXk € §Q(C” x C™). To see this, for any
a,B € N2", any M, N € N, above argument shows that one can find M’ > M

so that

(1+ \/E|Z — w|)N 8%85)&;(@(]3@ kA#RM’)(l‘vy)Xk;(y)
k) ¢
SCa,B,Nknf%(l + \/E’Z| + \/E’w’)l(a,ﬁ).

Therefore, by Lemma [I5] and above estimate,

M
k(@) Py 5 (2 )Xk W) = D Xk (@) Pty o R (2, 1) Xk (9)
j=0

M'—1

=Xk (@) (P g B ) (@, )Xk (W) + > Xn(@) Pag kgo # Ry (@, 9) X0 (v)
j=M+1
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is in S"~M/2(C™ x C"). In view of Theorem [ we conclude that
Xk(2) Py s, y)xe(y ZXk Py oo # R (2. 9)Xk ()

and thus Y (z )E; 4 (ac Y)xk(y) € 521(@" x C™). O

3.5. Localization of global Bergman kernel

In this section, we complete the proof of Theorem [I] by localizing global
Bergman kernel to the approximate Bergman kernel whose asymptotic ex-

pansion is already established in section 3.4.

Our goal is to establish the relation between 11}, ¢ and P@,kq@' To achieve
this, we need to modify approximate Bergman kernel to a kernel defined on
U. First, we consider a sequence of bump functions {¢;}3°, € C°(U, [0, 1])
such that for any compact set K C U, K Nsuppt; # 0, for only finitely
many 4, and » >, 1¢; =1 on U, and we define

n(z,w) = > bi(2);(w) (60)

SUpp ¢;NSupp ¢; #0

Lemma 17. 7 is smooth and 7 = 1 on a neighborhood ) of the diagonal
Ay C U x U. Furthermore, the projection suppn — U on both z and w

directions are proper maps.

Proof. Clearly, it suffices to prove that n is smooth on a neighborhood
of any (xo,y0) € U x U. For any (zo,y0) € U x U, any neighborhoods
W, W' € U of zy and g, respectively. By construction of {i;}, we know
that there exist only finitely many ¢,7 € N such that suppvy; N W # 0 and
supp¢); N W' # (). Therefore, the sum in (G0 is a finite sum on W x W’ and
thus n € C°°(W x W'). For the second assertion, observe that

w) =3 i) — x(zw) =D i(2) Zu@ — x(z,w)
=1 =1
=) vi(2)(w) — > Yi(2)(w)

i,5=1 Supp ¢;Nsupp ¢; £0
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= > Yi(2) 1 (w).

Supp ¢;Nsupp ;=0

If 1 —n(z,w) # 0, then 9;(2) # 0 and 1;(w) # 0, for some pair (4, j) with
supp¥; Nsupptp; = . We know that for such pair (4,7), z € supp; and
w € supp; and thus (z,w) € supp); x supp ;. This shows that

supp(l —7) = U supp 1; X supp ¢j,
Supp ¢;NSUpP ;=0

and thus the intersection of supp(1—n) with the diagonal of U x U is empty.
Furthermore, for each zy € V, if 2y € supp ¢;,, then there exists only finitely
many ji,...,jn such that supp;, Nsuppv;, # 0, for [ =1,..., N. Thus,
we can pick a neighborhood W of 2y such that W N Ulj\il supp 1, = . This
shows that (W x W) Nsupp(l —n) = 0. As a result, n = 1 on an open
neighborhood € of the diagonal.

Finally, for each compact set K C U, the pre-image of it under the first
projection is then given by (K x U)Nsuppn. Since there exists only finitely
many index iy, ...,iy such that suppe;, N K # 0, for L =1,..., N, and for
each | = 1,..., N, there exists only finitely many j; ,, for m = 1,..., M,
such that supp;, Nsupp v, , # (). This shows that

suppn N (K xU) = (K xU) N U SuUpp t; X supp ¥;
SUpPP ¢;NSUPP ¢; #0

M
suppy, x | supp ¢y, .,

m=1

[
=

N
I
—

and thus suppn N (K x U) is compact. The proof for second projection is
the same. O

We define localized approzimate projection, TIj, : L2 (U,w) = L2(U,w)
by

([F)(z) = | Pyl wnzowputuke, (w) (61)

whose Schwartz kernel is given by Ky (z,w) = P@,ka(z’ w)n(z,w). By Lemma
[T we know that the projections (z,w) € suppn — w € U is proper,
and thus 7(z,w)u(w) also has compact support in z. This shows that
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~

Iy : L2, (Uw) — L2, (U,w). On the other hand, by the properness of

comp comp

(z,w) € suppn — w € U, we know that for v € L?(U,w), any 7 € C®(U),
7(2)(yu)(z) € L2(U,w). This implies that IIj, : L2(U,w) — L2 _(U,w).

loc

On the other hand, we also define localized approximate projection ﬁk :
L*(U,w) — L2, (U,w) concentrated near origin by

comp
(Tew) (2) = X (2) (e (xkw)) (2), (62)
where Yr(z) = )Z(Skl/%ez), Xk(2) = X(8k1/2*52) and
supp xx C B1(0), suppXx C B2(0), X =1on suppy, x=1 on By/(0).

By construction, we know that supp X, supp xx C Vi. We denote IN(k (z,w)
by the Schwartz kernel of II;. Therefore, we have

Ki(z,w) = Xi(2) Kk (2, w)xi(w) = Xr(2) P 1 3(2, w)n(z, w)xe (w).
We first prove a crucial result which is important in our later arguments.

Theorem 18. For e € (0,1/6), (1 — Xx)P5 kg Xk iS @ k-negligible operator
in the sense of Definition[3

In view of Definition Bl it suffices to prove that for any I, N € N, any
compact set K C C" x C", [|(1 = Xx(2)) P ;. 5(@, y)xk W)l cr sy < Cn k=N,
for some constant Cy; > 0 independent of k. We first prove a lemma.

Lemma 19. For any m € R, a € S™(C" x C"),

(1-— ik(»’«’))P@,kg(%w)Xk (w) = 0mod O(k~).

Proof. Notice that (1 — Xx)axg supports in (supp xx)¢ X supp xx. Since
d := d(supp(1 — X),supp x) > 0, we only need to consider

1 1 1
lw| < gk:_l/2+€, |z] > gk:_l/2+€, and |z —w| > gk—%+€5.

Now, given any «, 3 € N2", any L € N, since a € §m(C” x C™), we have the
following esimtate

12181 (ja 49y (L+ V|2 + VE[w]) @)

9095 (1 — X)axe| < Caprk
20, (1= Xr)axk| < Cap.L (1+VE|z —w|)E
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Now, given any compact set K C C" x C™ with (supp xx)¢ X supp xx, we
may assume %l{:_l/z“'6 < |z| £ R, for some R := Rk > 0 depending on K.

Hence, we get
1+ |k|° + VER)!(@P)
(1 4 8ked)L

k—Le<85)—LRl(a,,3)
\a|+|ﬁ\2+l(a,/3) el

- o] +181
0200 (1 — )| < gk 5

la|+|B[+1(a,B)
< Ca,B,Nkm+ 2

< Ca,/37L7K(85)7Lk:m+

m—+ \a|+|3\;l(aaﬁ)+N
2e

For any N € N, we choose L > . Therefore, we see that

0505 (1 — X)axn| < CagmNerxk ™. O

Proof of Theorem [18. Now, if we multiply (B8] by (1— Xx)(2)xk(w), then

by above Lemma,

(1- ik)(z’)ﬁwo,k%#ijk = 0mod O(k~>),
for any j € N. Similar to Lemma [I4], we estimate

0 =T [ Poale ) Basaw)dm(a) ()

(L |t]+2v w2 172
) I(w)]

<]1- ik(z)fpa,kq?(Z?Z)P/QCLknM/2</n (1—|—|t|)2L

<Cpih"TFE < Copich™Y,
where we choose L = Ly(n,l) so that the integral converges and M > 2n +
l+2N, for any N € N. The derivatives estimates proceeds in similar fashion
but [ may depends on the degree of differentiation. In conclusion, for any

N € N, any a,8 € N, there exists M > 2n + l(a, ) + 2N € N and
Ch,a,8,k > 0 independent of k such that

S%P 3555(1 = Xk) By gt R x| < Craprk .

Hence, given any «, 3 € N2", any N € N, we choose M > 2n + I(a, 3,2N)
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so that

51— X(2) Py (2 w)xn (w)|

M—

Z

5 (0= X0 () P 1) (20 ()|

205 (1= ) (Pt B ) (2,0 (w)|

<Cuprnk . O

Remark 3. Notice that the condition on Lemma can be relaxed. We
actually proved that x4 P ;57 = 0mod O(k™), for x; € C2°(C",[0,1]),
T, € C*°(C™,[0,1]) with d(supp Xk, SUpp 7%) > %k*1/2+€5, for some 6 > 0
independent of k. Particularly, we can exchange the role of 1 — X} and xy.
Also, by Theorem [§, we see that

(1= X)Py e = —(1 = X0)F5(A0 ) 9gxn = 0mod O(k™). (63)
Theorem 20. D,(cogﬁk s k-negligible, i.e., Dg)z,ﬁk =0mod O(k~°) on U.

Proof. 1t suffices to prove 576,51711C = 0mod O(k~*°) on L?(U,w). In view of

Definition Bl it remains to prove that
3k,s( k(2 )PA (z w)n(z,w)Xk(w)> =0modO(k™), onU.
To see this, we write
Xk (2) B 1 5(z, w)n(z, w)x (w)
=Xk(2) 5 5(2, w)xe(w) + (1 = 1(z, )Xk (2) P 15(2, w) xe (w)
For the latter term, from the proof of Lemma [I7] we see that

(1 - 77(27 w));(k (Z)ng’kg(zv w)Xk’(w)
= > bi(2)Xk(2) By 152, w0)xk (w)ih; (w).

Supp ¥;NSupp ¢,;=~0

Now, notice that the proof of Theorem [I§ works for ¥;(z)xx(z) and
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j(w)xk(w) (cf. Remark B]), and thus we see that

(1 =n(z,w)Xr(2)F; 5(2, w)xk(w) = 0mod O(k™).
For the first term,

5k:,s()~ik( )P@ k¢(z w) Xk (w))
= (9 + k09)(Xk(2) P ;5(2, w)xu(w))
= (0Xk)(2) Py 1,3(2, w)x (W) + X (2) O, (P 1, 5(2, w)) i (w).

Since xx(w) supports in Vi and w =0, 5: ¢ on Vi, we have 5’%5(13@ k<$<z’
w)) = 0. On the other hand, Theorem [I§ (cf. again Remark B]) shows that

(OXk) (2 )Pk (z w)xk(w) = 0mod O(k™°). O

mmp(U w) — LA(U,w) and I : L*(U,w) — L2, (U,w),
the composition ITj o Hk’s : L2(U) — L?(U) makes sense. Recall that if the
local spectral gap condition (B holds on an open set U C X (0). By local

Since IIj , :

unitary identification in section 3.1, we have
I =Tl < gl Oull, w e C2(0), (64
Hence, we can prove

Theorem 21. If the local spectral gap condition [Bl) holds on an open set
U C X(0), then the operator Hk’,sﬁk — 10, is k-negligible on U.

Proof. For any u € C°(U), we have the following estimate for L?-norm.
(00T = Ty ull = | (s = Dl < O k00 il

Using Theorem 20} D,(coiﬁk = Omod O(k~*°). Thus, for any N > 0, there
exists a k-independent constant C' := Cj;ny > 0 so that HD Hk,un <

Ck™N|ullyy - o, for any M > 0. Also, notice that D( )(Hk, - H;ﬁsﬂk) =
D,(c(?gﬂk = 0mod O(k~°). By elliptic estimate, for any u € C°(U), we know

that there exists a constant C' > 0 independent of £ and [ > 0 so that for
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any m € N, any N € N,

(T s T — IO )uflyyom o
< CK™ (O™ (Mg o Ty, — Tyl + | (T I — I ul)
0 d — 0) —
SE (O™ ully + kO Meull) < BN [ully-2m o,

(0)

for coefficient of [, has at most polynomial growth in k. By density argu-
ment, above estimate holds for any u € L?(U,w) and thus

Hk,sﬁk: — ﬁk : W_Qm(U,w) — WQm(U,w)
has operator norm O(k~), for any m € N and N € N. We conclude that
Hk,sHk = II;; mod O(kioo) O
On the other hand, we prove
Theorem 22. The operator Xkﬁk’)?k’nk’,s — Xkl s is k-negligible on U.
An asymptotic upper bound of Il ; is needed for Theorem
Lemma 23. For any «, 3 € N3", there exists a constant Copu > 0 so that

la|+]8

020, (Kis)(@'y))| < Capuk™ "2, Va'y €U

Proof. This proceeds similar to the proof of (B9) in the first part of the
proof of Theorem O

Proof of Theorem Since xg, Xx supports in Vi, and & = w, $ = ¢ on
Vi, by Thoerem B for any v € L2, (U,w), we can write

comp

Ok Tk Xa g su) (2) = > Xk (2)0i(2) (P 15 (05 Xk su)) (2)
SUPD $:NSUPP 3, 40

=— > Xk (2)¥i(2) (P 15 (€5 Xk, sw)) (2) + Xk (2) Py 1 5(Xellk,su) (2)
SUpp %;NSupp ;=0

=- > Xk (2)¥i(2) (P (4 XTIk, su))(2)
Supp ¢;NSupp ;=0

+ X = 0B 7 9,5) (Rallsw) (2)

= xk(2) (Hg,su)(2) — > Xk(2)¥i(2)(Py 5 (05 Xk, su)) (2)
SUPP ¥;NSUPP v; =0
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— k()50 ) O o) (2) = Xk () (A ) T R (G g TIksu) (2).

Applying Theorem [I§ and Remark [3] to the last two terms, we have

> VP gty = 0mod O(k™),
Supp ¢;NSUpP ;=0
A% 1 —1/89~ \ __ —00
Xkaka(géia) LX) = 0mod O(k~).
Also, § = ¢ on Vi, xi(2)95(A0) )™ u(Oslli,su) () = 0.
Combining with Lemma which shows that derivatives of K},  is at

most polynomials in k, we see that

Xk (2) s = X1k XaITE s mod O (k™). O

Proof of Theorem [l If we take adjoint in Theorem 221 we get
Hk,st = Hk’sﬁﬁ:ka mod O(kioo),

where ﬁ;’w means the adjoint with respect to w. As in the proof of Theorem

21, since x&, Xx supports in V;, and @ = w, 5: ¢ on Vj, we see that
XeIL X = XeII“ xk = Xellkx-

The last identity follows from P, - is sclf-adjoint (with respect to @),

77(27“]) = n(waz) - 77<w7z)> and kk('z:w) = P@ ka(z7w)n<zaw) By The-

orem 2I] and the assumption that U satisfies local spectral gap, we conclude
that

Oy Xk = Hk’sﬁk =TI mod O(k=).
In terms of kernels, this shows that
Koo (2, 0) 06 (1) = X (2) Py (2 02, ) (1) mod O(k™).
Since 7(z,w) is k-independent, by multiplying 7 to (B8], we see that

Xr(2) Py (2, w)n(z, w)xe (w) € SE(C" x C")

and
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Xk(2) By 5(z w)n(z, w)xe (w ZXk )(Piog oo #R?7 ) (2, w)n(2, w) x (w).

Finally, by multiplying p on above, we have

P(2)Xk(2) P 4 5(2, w)n(z, w)xe (w) = p(2) K5 (2, w)x (w) mod O (k™).

We see that
p(2) K s(2,w)xk(w) € SH(C" x C")

as it is supported in U x Vj. O
We also deduce Theorem [2

Proof of Theorem [2l From the proof of Theorem [IG] we know that
Xk(2) By 5(z, w)xe(w ZXk Py koo # B (2, w)xk (w)

and by Theorem[I8] X (z)P; M)(z w)n(z, w)xk(w) =P, M)(z w)xk(w). Hence,

P(2) Ki,s (2, w)xk (w) ~ p(2)Xk(2) Py 1 5(2 w)xp (w).
The first coefficient in the asymptotic sum is given by

2N - e ok 1 w2277 — |27 2= |wI 2) — k(61 (2) — 1 (w))
T '

Py ko (z,w) =

By (55), we know that 1 — e k(1(2)=¢1(w)) ig of lower degree in k, we get

P A S N (259|292 fwd]?) 0

ap(z,w) = -
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