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Abstract

We give a new proof on the pointwise asymptotic expansion for Bergman kernel

associated to k-th tensor power of a hermitian holomorphic line bundle on the points

where the curvature of the line bundle is positive and satisfies local spectral gap condition.

The main point is to introduce a suitable semi-classical symbol space and related symbolic

calculus inspired from recent work of Hsiao and Savale. Particularly, we establish the

existence of pointwise asymptotic expansion on the positive part for certain semi-positive

line bundles.

1. Introduction and the Main Result

Let L be a holomorphic line bundle over a complex manifold X with

dimCX = n. If we endow a positive, smooth (1, 1)-form ω on X, which

induces a Riemannian volume form dνX = ωn := ωn

n! , and a hermitian metric

hL on L given by local weight φ, then they give rise to a scalar product on

C∞
c (X,L), the space of smooth global sections for L with compact supports.

We then complete C∞
c (X,L) with respect to the scalar product to get a

Hilbert space L2
ω,φ(X,L). The orthogonal projection Π : L2

ω,φ(X,L) →
H0(X,L) onto the subspace of L2-integrable holomorphic sections of L is

called the Bergman projection, and its Schwartz kernel K(z, w) is called the

Bergman kernel. It is well-known that K(z, w) is a smoothing kernel.
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In general, it is difficult to calculate the Bergman kernel explicitly. How-

ever, when we replace L by its k-th tensor power Lk := L⊗k and the her-

mitian metric φ by kφ, the large k-behavior of the Bergman kernel is rather

tractable and has important applications such as approximation of Kähler

metrics by Fubini-Study metrics via the Kodaira map ([40], [5], and [36]),

existence of canonical Kähler metrics (eg. [17], [19], and [9]–[10]), Berezin–

Toeplitz quantization (eg. [4], [37], and [34]), and in physics [15].

If L is positive and X is compact, then a well-known asymptotic formula

asserts that there exist smooth functions br(x) ∈ C∞(X), for r ∈ N0, such

that for any N, l ∈ N, there exists a constant C := CN,l > 0 independent of

k satisfying

∥∥∥Kk(z, z) −
N∑

r=0

kn−rbr(x)
∥∥∥
Cl(X)

≤ Ckn−(N+1), k ≫ 1. (1)

The existence of formula (1) has been worked out in various generalities and

through a variety of methods over the last thirty years. The leading asymp-

totic was first proved independently by Tian (1990, [40]) using Hörmander’s

L2-estimates and by Bouche (1990, [5]) using heat kernel. The full asymp-

totic was later developed independently by Catlin (1999, [8]) and Zelditch

(1998, [43]) using a result in CR geometry due to Boutet de Monvel and

Sjörstrand (1975, [2]). Later, Dai, Liu, and Ma (2006, [16]) and Ma and

Marienscu (2006, [33]) obtained both diagonal and off-diagonal expansions

for generalized Bergman kernels for spinc-Dirac operators on compact sym-

plectic manifolds based on the analytic localization technique due to Bismut

and Lebeau. We refer the book of Ma and Marinescu [32] and the references

therein for this approach.

If one drops the positive curvature assumption for L and assumes in-

stead that the curvature is non-degenerate with constant signature (n+, n−),
then Berman and Sjöstrand (2007, [7]) showed the similar asymptotic expan-

sions holds for orthogonal projection onto the space of harmonic (0, q)-form

H 0,q(X,Lk) of Kodaira Laplacian if X is compact and q = n−. Indepen-

dently, Ma and Marinescu (2006, [31]) proved the analogous results in the

setting of spinc-Dirac operators on compact symplectic manifolds. In [27],

Hsiao and Marinescu (2014) proved that the spectral function for Kodaira

Laplacian always admits local asymptotic expansion for any hermitian holo-

morphic line bundle on the non-degenerate points of the curvature, and they
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deduce local asymptotic of Bergman kernel under the additional spectral gap

condition (cf. Definition 1).

We now formulate the main result. Let (X,ω) be a hermitian manifold

of complex dimension n, where ω is a smooth, positive (1, 1)-form on X,

inducing the hermitian structure on X. We denote 〈·|·〉ω by the hermitian

metric on T 1,0X induced by ω. A canonical Riemannian volume form dνX

for (X,ω) is given by ωn := ωn

n! . Let L be a holomorphic line bundle on

X and set Lk := L⊗k, for k ∈ N. For any hermitian metric h on L, we

can define the Chern connection ∇ on L with respect to h with curvature

RL(h) = (∇L)2 ∈ A1,1(X). We identify RL(h) with the curvature operator

ṘL(h) ∈ C∞(X,End(T 1,0X)) by

√
−1RL(h)(x)(v ∧ w) = 〈ṘL(h)(x)v|w〉ω , (2)

for any x ∈ X, v,w ∈ T 1,0
x X. We denote n+(x),n−(x),n0(x) by the number

of positive, negative, and zero eigenvalues of ṘL(h) at x. For q = 0, . . . , n,

we let X(q) := {x ∈ X : n+(x) = n− q, n−(x) = q, n0(x) = 0}. Notice that

X(q) is an open set of X, for each q ∈ {0, 1 . . . , n}.

Locally, if s is a holomorphic trivialization of L over an open set U ⊂
X, then the hermitian metric h is determined by |s|2h = e−2φ, where φ ∈
C∞(U,R) is called the local weight of h. On the k-th tensor power Lk of L,

h induces a natural hermitian metric hk on Lk with local weight kφ. Let

〈·|·〉kφ be the pointwise scalar product on the bundle Lk and (·|·)ω,kφ be

the inner product on the space C∞
c (X,Lk) of compact supported smooth

sections of Lk, induced by ω and hk. We denote | · |kφ and ‖ · ‖ω,kφ be the

pointwise and L2-norm associated to ω and hk, and let L2(X,Lk) be the

completion of C∞
c (X,Lk) with respect to ‖ · ‖ω,kφ.

Let ∂̄ : C∞(X,Lk) → A0,1(X,Lk) be the Cauchy–Riemann operator

acting on smooth sections of Lk, ∂̄∗ be the formal adjoint of ∂̄ with respect

to (·|·)ω,kφ, and �
(0)
ω,kφ := ∂̄∗∂̄ be the Kodaira Laplacian acting on C∞(X,Lk)

(cf. (13)). We denote by �
(0)
k by Gaffney extension of the Kodaira Laplacian

(cf. [32, Proposition 3.1.2]). Let H 0(X,Lk) be the kernel of �
(0)
k and let

Π
(0)
k : L2(X,Lk) → H 0(X,Lk) be the Bergman kernel for Lk-sections.

To state our result, we first define local spectral gap property.
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Definition 1. For d ∈ R and an open set D ⊂ X, we say that �
(0)
ω,kφ has

local spectral gap condition of order d on D if there exists C > 0 and k0 ∈ N

such that for any u ∈ C∞
c (D,Lk), if k ≥ k0,

∥∥∥(I −Π
(0)
k )u

∥∥∥
ω,kφ

≤ 1

Ckd

∥∥∥�(0)
ω,kφu

∥∥∥
ω,kφ

, (3)

where Π
(0)
k is the Bergman projection from L2(X,Lk) → H 0(X,Lk).

Next, we introduce the key ingredients in our approach. Namely, a kind

of semi-classical symbol space inspired from the recent work of [28].

Definition 2. For m ∈ R, a function a(x, y, k) with parameter k ∈ N is in

Ŝm(Rd × R
d) if

(i) a(x, y, k) ∈ C∞(Rd × R
d), for each k ∈ N, and

(ii) for any(α, β) ∈ N
2d
0 , there exists l = l(α, β) ∈ N and k0 ∈ N such that

for any N ∈ N, there exists a constant C = Cα,β,N (a) > 0 independent

of k satisfying

∣∣∣∂αx ∂βy a(x, y, k)
∣∣∣ ≤ Ckm+

|α|+|β|
2

(1 + |
√
kx|+ |

√
ky|)l

(1 + |
√
k(x− y)|)N

, (4)

for any (x, y) ∈ R
d × R

d, any k ≥ k0.

Furthermore, we say a ∈ Ŝmcl (R
d×R

d) if a ∈ Ŝm(Rd×R
d) and there exists a

sequence aj ∈ Ŝ(Rd×R
d) (cf. Definition 4 for the definition of Ŝ(Rd×R

d)),

for j ∈ N0, so that

a(x, y, k) −
N−1∑

j=0

km− j
2 aj(

√
kx,

√
ky) ∈ Ŝm−N

2 (Rd ×R
d), ∀N ∈ N. (5)

It is convenient to work in an equivalent set-up for which the norm

is defined by integral without parameter k. Let s be a local holomorphic

trivialization of L over an open set U ⊂ X, we can make the following

identification:

A0,q(U,Lk) → A0,q(U), u = sk ⊗ α 7→ α̃ := αe−kφ
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so that for any u, v ∈ L2
0,q(U,L

k) ∩A0,q(U,Lk),

(u|v)ω,kφ =

∫

U
〈α|β〉ωe−2kφωn =

∫

U
〈e−kφα|e−kφβ〉ωωn =: (α̃|β̃)ω.

Let L2
0,q(U,ω) be the completion of L2

0,q(U) with respect to (·|·)ω defined

above. Clearly, above identification extends to an isometry L2
0,q(U,L

k) ∼=
L2
0,q(U,ω). We define the localized Bergman kernel with respect to s by

Π
(q)
k,sα = e−kφs−kΠ(q)

k (ekφα⊗ sk),

where s−k is the dual section of sk so that s−k(sk) ≡ 1 on U . We denote

Kk,s by the Schwartz kernel of the localized Bergman kernel Πk,s, called the

localized Bergman kernel.

We now can state the main result.

Theorem 1. Suppose X(0) 6= ∅, say x ∈ X(0). For any D ⊂ X(0) of x

satisfying the spectral gap condition (cf. Definition 1), there exists a trivial-

izing open set U ⋐ D and a holomorphic coordinate z on U centered at x so

that on U , we have

ρ(z)Kk,s(z, w)χk(w) ∈ Ŝncl(C
n × C

n),

where ρ ∈ C∞
c (U), χk(z) := χ(8k1/2−ǫz), χ ∈ C∞

c (Cn) satisfying

suppχ ⊂ B1(0), χ = 1 on B1/2(0), ρ = 1 near 0,

and ǫ ∈ (0, 16 ).

From (5), there exists a sequence aj ∈ Ŝ(Cn × C
n) such that for any

N ∈ N,

ρ(z)Kk,s(z, w)χk(w) −
N∑

j=0

kn−j/2aj(
√
kz,

√
kw) ∈ Ŝn−

N+1
2 (Cn × C

n). (6)

Furthermore, we can calculate the first coefficient of the expansion.

Theorem 2. In the setting of Theorem 1, under the choice of holomorphic
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coordinates and holomorphic trivializations on U (cf. Fact 3) such that

φ(z) = φ0(z) +O(|z|3), φ0(z) :=

n∑

i=1

λi,x|zi|2, λi,x > 0,

ω = ω0(z) +O(|z|), ω0(z) :=

√
−1

2

n∑

j=1

dzj ∧ dz̄j ,

the first coefficient in (6) is given by

a0(z, w) =
2nλ1,x · · ·λn,x

πn
e
∑n

j=1 λj,x(2z
jwj−|zj|2−|wj|2),

where 4λ1,x, . . . , 4λn,x are the eigenvalues of curvature operator ṘL(h) at

x ∈ X.

By (4), this means that given N ∈ N, there exists l = l(N) ∈ N such

that for any M > 0, there exists a constant C = C(N,M) > 0 satisfying

∣∣∣ρ(z)Kk,s(z, 0)−
N∑

j=0

kn−j/2aj(z, 0)
∣∣∣ ≤ Ckn−

N+1
2 (1+|z|)l−M , |z| < 1

2
kǫ−1/2.

If we further put z = 0, then we obtain a pointwise asymptotic for

Kk,s(z) ∼
∞∑

j=0

kn−j/2aj(z)

in the sense that for any N ∈ N,

∣∣∣Kk,s(0, 0) −
N∑

j=0

kn−j/2aj(0, 0)
∣∣∣ ≤ Ckn−

N+1
2 .

This establishes the local pointwise asymptotic of Bergman kernel function

on X(0) with local spectral gap condition.

1.1. Application of main results

We now give a digression on spectral gap condition given in Definition

1 and demonstrate that Theorem 1 guarantees the existence of pointwise

asymptotic in many situations.
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First of all, it is clear that if (3) holds on D, it holds on any open subset

of D. Now, we say �
(0)
ω,kφ satisfies global spectral gap condition if (3) holds

for D = X. When X is compact, by Hodge theorem, global spectral gap

condition is equivalent to

λ1(X,L
k) := inf{λ ∈ Spec�

(0)
ω,kφ : λ 6= 0} ≥ Ckd.

In other words, it is equivalent to Spec�
(0)
ω,kφ ⊂ {0}∪ [Ckd,∞). We now give

some known examples for spectral gap condition.

Example 1 (cf. [32], Theorem 1.5.5). Given a compact complex manifold

X, a positive line bundle L with respect to a hermitian metric h, by Nakano

inequality, there exists constants C0, C1 > 0 such that for any k ∈ N,

Spec�
(0)
ω,kφ ⊂ {0} ∪ (C0k − C1,∞).

Hence, �
(0)
ω,kφ satisfies global spectral gap condition of order 1.

Example 2. In [39], Siu conjectured the following ”eigenvalue conjecture”:

if X is compact and L is quasi-positive, then

inf
k∈N

λ1(X,L
k) > 0. (7)

Particularly, (7) implies that �
(0)
ω,kφ satisfies global spectral gap of order N ,

for some N > 0. However, Donnelly [18] demonstrated that Siu’s conjecture

is false in general. Moreover, let S → X be the unit circle bundle of L, which

is a CR manifold, Donnelly also showed that (7) is true if the tangential

Cauchy–Riemann operator ∂̄b has closed range. From this, one can deduce

that if L is a positive line bundle with semi-positive metric, then (7) is true

(with respect to the semi-positive metric). This particularly implies that (7)

is true for any quasi-positive line bundle on compact Riemann surfaces.

Example 3. Let (L, hL) be a semi-positive holomorphic line bundle over

a compact hermitian manifold (X,ω) with dimCX = n. If we arrange the

eigenvalue of ṘL at x as 0 ≤ µ1(x) ≤ · · · ≤ µn(x), then µ1(x) is a con-

tinuous function on X. Bouche [6] showed that if
∫
X µ

−6n
1 dνX < ∞, then

λ1(X,L
k) ≥ k

10n+1
12n+1 . Hence, Bouche condition implies that �

(0)
ω,kφ satisfies

global spectral gap condition of order s = 10n+1
12n+1 .
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Now, we consider non-compact examples for spectral gap condition.

Example 4. Let (L, hL) be a semi-positive holomorphic line bundle over a

complete Kähler manifold (X,ω) with dimC = X = n, ω is a Kähler metric

which is not necessarily complete. Then Demailly’s L2-estimate [13] implies

the following. If g ∈ L2
0,1(X,KX ⊗ L) satisfying ∂̄g = 0 and

∫
X |g|2

RLdνX <

∞, where |g|RL(x) := infg′∈∧n,1 T ∗X⊗L
〈
√
−1RLΛg′.g′〉
〈g,g′〉2(x) , then there exists f ∈

L2(X,L⊗KM ) with ∂̄f = g and

∫

X
|f |2hLdνX ≤

∫

X
|g|2RLdνX .

From Demailly’s result, Hsiao and Marinescu in [27] proved that for any

precompact open set D ⋐ X(0), �
(0)
ω,kφ has spectral gap of order 1 on D.

Example 5. Let (X,ω) be a compact hermitian manifold. Assume (L, hL) →
X is a smooth quasi-positive line bundle. Then by the solution of Grauert–

Riemenschneider conjecture (cf. [32, Chapter2]), we know that X is a Mois-

chezon manifold and L is a big line bundle. From [32, Lemma 2.3.6], L

admits a singular hermitian metric hLsing which is smooth outside an an-

alytic set Σ and whose curvature is strictly positive current. Hsiao and

Marinescu in [27, Lemma 8.1, Theorem 8.2] proved that for any open set

D ⋐ X(0) ∩ (X \Σ), �(0)
ω,kφ for the open manifold X \Σ has spectral gap of

order N = − supx∈D 2(φ(x) − φsing(x)), where φ and φsing are local weights

of hL and hLsing, respectively.

These examples illustrates that Theorem 1 asserts the existence of point-

wise asymptotic of Bergman kernel in more general situation.

2. Preliminaries

2.1. Standard notations

We denote N := {1, 2, . . . } by the set of natural numbers and N0 :=

N ∪ {0}. We adopt the following two multi-indices notations. For a multi-

index α = (α1, . . . , αn) ∈ N
n
0 , we denote |α| :=∑n

i=1 αi. We adopt standard

notations such as α! = α1! · · ·αn!, xα, and ∂αx . On the other hand, a n-tuple

J = (j1, . . . , jq) ∈ {1, . . . , n}q is called a strictly increasing multi-index of
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length q if 1 ≤ j1 < · · · < jq ≤ n. For a differential q-form α, the local

expression in local coordinate x = (x1, . . . , xn) is given by

α =
∑′

|I|=q
αIdx

I ,

where
∑′

|I|=q means that summation is over strictly increasing multi-indices

I of length q. Also, we denote dm by the standard Lebesgue measure on

Euclidean spaces and Br(z) by the open ball with radius r > 0 and center

z ∈ C
n

Let X be a complex manifold. We introduce some standard notations

of various function spaces. For any open subset U ⊂ X, we denote OX(U)

by the space of holomorphic functions on U . In case of X = C
n, we denote

OCn(U) by O(U). We also denote C∞(U) and C∞
c (U) by the space of

smooth functions and the test functions on U , respectively. If E → X is a

complex vector bundle, we denote C∞(U,E) and C∞
c (U,E) by the space of

smooth sections and its subspace whose elements having compact supports

in an open subset U ⊂ X. Similarly, we denote D′(U,E) and E ′(U,E) by the

space of distribution sections of E over U and its subspace whose elements

having compact supports. For t ∈ R, we denote W t(U,E) by the Sobolev

space1 of order t of sections of E over U ,

W t
loc(U,E) := {u ∈ D′(U,E) : φu ∈W t(U,E),∀φ ∈ C∞

c (U)}, and

W t
comp(U,E) :=W t

loc(U,E) ∩ E ′(U,E).

2.2. Backgrounds in hermitian geometry

For a complex manifold X, we have a natural almost complex struc-

ture J : TX → TX from multiplication by
√
−1. Hence, J induces an

eigenspace decomposition TX ⊗R C = T 1,0X ⊕ T 0,1X, where T 1,0X is the√
−1-eigenspace of J and T 0,1X is the −

√
−1-eigenspace of J . Also, J

induces an almost complex structure on T ∗X. Hence, we also have the

eigenspace decomposition for complexified cotangent bundle T ∗X ⊗R C =

1The usual notation for L2-Sobolev space isHs. However, to avoid the confusion with cohomology
group, we denote it by W s.
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∧1,0X ⊕∧0,1X. Moreover, this extends to exterior algebra of complexified

cotangent bundle:

∧r
T ∗X ⊗R C =

⊕

p+q=r

∧p,q
X,

where
∧p,qX is locally spanned by dzI∧dz̄J , for any strictly increasing multi-

indices I ∈ {1, . . . , n}p, J ∈ {1, . . . , n}q. We denote Ar(U) = C∞(U,
∧r T ∗X)

and Ap,q(U) = C∞(U,
∧p,qX) by the space of smooth r-forms and smooth

(p, q)-forms on U , respectively.

Recall that a hermitian form on a complex manifold X is a smooth

(1, 1)-form ω ∈ A1,1(X) such that in a local holomorphic coordinate z =

(z1, . . . , zn) on a chart U of X,

ω
∣∣
U
=

√
−1

2

n∑

i,j=1

Hijdz
i ∧ dz̄j , (8)

where H(x) = (Hij(x))
n
i,j=1 is a positive-definite hermitian matrix for any

x ∈ U . It is well-known that a hermitian form ω is equivalent to a Rieman-

nian metric g on the underlying real manifoldX which the complex structure

is an isometry. We then extend g to a hermitian metric on TX ⊗R C, still

denoted by g,

g(v ⊗ λ,w ⊗ µ) :=
1

2
λµg(v,w),

where v,w ∈ TxX and λ, µ ∈ C. Thus, we can define a pointwise hermitian

inner product 〈·|·〉ω on Ap,q(X) induced from ω.

Now, let α, β ∈ Ap,q(X,Lk) := C∞(X,
∧p,qX ⊗ Lk) be two Lk-valued

(p, q)-forms. Under a choice of trivialization s : U → L of L, we can write

α = f ⊗ sk, β = g ⊗ sk. We define

〈α|β〉ω,φ := 〈f |g〉ωe−2φ, (9)

where φ is the local weight of h associated to s. We then define a L2-

hermitian inner product (·|·) on Ap,qc (X,Lk), the space of compact supported

(p, q)-forms valued in Lk, by

(α|β)ω,kφ :=

∫

X
〈α|β〉ω,kφdνX . (10)
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We write ‖α‖2ω,kφ := (α|α)ω,kφ and denote L2
p,q(X,L

k) by the completion of

Ap,qc (X,Lk) with respect to the norm ‖ · ‖ω,kφ.

Notation. We sometimes denote L2
p,q(X,L

k) by L2
ω,kφ(

∧p,qX ⊗ Lk) if we

wish to stress the choice of ω and kφ.

Given a holomorphic vector bundle E over a complex manifold X, let

∂̄E : Ap,q(X,E) → Ap,q+1(X,E) be the Cauchy–Riemann operator. We

always choose the Chern connection ∇E on E which is compatible with a

given hermitian metric hE on E. For a holomorphic line bundle L→ X with

a hermitian metric h on it, if (s, U) is holomorphic trivialization of L over

U and φ is the local weight of h determined by s. In this case, the curvature

form RL(h) of the Chern connection ∇ := ∇L is locally given by

RL(h) = −∂∂̄ log e−2φ = 2∂∂̄φ = 2

n∑

j,l=1

∂2φ

∂zj∂z̄l
dzj ∧ dz̄l. (11)

In particular,
√
−1RL(h) is a closed, real (1, 1)-form on X. We define the

curvature operator ṘL ∈ End(
∧1,0X) as in (2).

Under simple change of coordinates and trivialized sections, one can

always make the local weight and hermitian form in a normal form.

Fact 3 (cf. [41], Lemma III,2.3). Let X be a complex manifold with hermitian

form ω, L be a holomorphic line bundle on X with a hermitian metric h.

Fix a point x ∈ X, we can choose a local complex coordinate (z1, . . . , zn)

on an open neighborhood U ⊂ X of x and a holomorphic trivializing section

s ∈ H0(U,L) such that

(i) zi(x) = 0, for i = 1, . . . , n,

(ii) ω(z) =
√
−1
2

∑n
i,j=1Hij(z)dz

i ∧ dz̄j with Hij(0) = δij , and

(iii) |s(z)|2h = e−2φ(z) with local weight

φ(z) =
n∑

i=1

λi,x|zi|2 +O(|z|3),

where 4λ1,x, . . . , 4λn,x are eigenvalues of ṘL(x).

We usually denote φ0(z) =
∑n

i=1 λi,x|zi|2.
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We denote ∂̄∗ := ∂̄L
k ,∗,ω,kφ : A0,q(X,Lk) → A0,q−1(X,Lk) by the formal

adjoint of ∂̄ with respect to (·|·)ω,kφ which is characterized by

(∂̄α|β)ω,kφ = (α|∂̄∗β)ω,kφ, α ∈ A0,q
c (X,Lk), β ∈ A0,q+1(X,Lk). (12)

Kodaira Laplacian for (L, h) is defined by

�
(q)
ω,kφ := ∂̄∂̄∗ + ∂̄∗∂̄ : A0,q(X,Lk) → A0,q(X,Lk). (13)

3. Asymptotic Expansion of Bergman Kernel

3.1. Localized set-up

As stated in the introduction, it is convenient to work in an equivalent

set-up for which the norms are defined by integrals without depending on k.

First of all, let η be a (0, 1)-form. We denote ǫ(η) := η ∧ · : ∧0,q T ∗
xX →

∧0,q+1 T ∗
xX be the wedging η from the left and ι(η) be its adjoint with respect

to 〈·|·〉ω. Hence, for η1, η2 ∈ A0,1(X), ǫ(η1)ι(η2) + ι(η2)ǫ(η1) = 〈η1|η2〉ωid.
Let e1(z), . . . , en(z) be an orthonormal frame for

∧0,1X over U , Z1, . . . , Zn

be its dual basis for T 0,1X. We can write Cauchy–Riemann operator ∂̄ on

A0,q(U,Lk) as

∂̄(sk ⊗ α) = sk ⊗
n∑

j=1

(
ǫ(ej)Zj + ǫ(∂̄ej)ι(ej)

)
α. (14)

Its formal adjoint with respect to the scalar product (·|·)ω,kφ is given by

∂̄∗(sk ⊗ α) = sk ⊗
n∑

j=1

(
ι(ej)(Z∗

j + 2kZj(φ)) + ǫ(ej)ι(∂̄e
j)
)
α, (15)

where Z∗
j is the formal adjoint of Zj with respect to the inner product

(α|β)ω :=
∫
X〈α|β〉ωωn on A0,q

c (X). To put ∂̄ and ∂̄∗ in more symmetric

form, we make the following identification.

A0,q(U,Lk) → A0,q(U), u = sk ⊗ α 7→ α̃ := αe−kφ

A0,q(U) → A0,q(U,Lk), β 7→ sk ⊗ ekφβ.
(16)
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This is a local unitary identification since for u, v ∈ L2
0,q(X,L

k) ∩ E ′(X,∧0,qX ⊗ Lk),

(u|v)ω,kφ =

∫

U
〈α|β〉ωe−2kφωn =

∫

U
〈e−kφα|e−kφβ〉ω = (α̃|β̃)ω,

where u = sk⊗α, v = sk⊗β. Then under this unitary identification, we get

∂̄(sk ⊗ ekφα) = sk ⊗ ekφ∂̄k,sα, (17)

where α ∈ A0,q(U) and

∂̄k,s =

n∑

j=1

(
ǫ(ej)⊗ (Zj + kZj(φ)) + ǫ(∂̄ej)ι(ej)

)
= ∂̄ + kǫ(∂̄φ). (18)

The formal adjoint ∂̄∗k,s with respect to the local scalar product (·|·)ω is given

by

∂̄∗k,s =
n∑

j=1

(
ι(ej)⊗ (Z∗

j + kZj(φ)) + ǫ(ej)ι(∂̄ej)
)
= ∂̄∗ + kι(∂̄φ) (19)

and satisfies

∂̄∗(sk ⊗ ekφβ) = sk ⊗ ekφ∂̄∗k,sβ, β ∈ A0,q+1(U). (20)

We call ∂̄k,s the localized Cauchy-Riemann operator with respect to s. The

localized Kodaira Laplacian with respect to s is then defined by

�
(q)
k,s := ∂̄∗k,s∂̄k,s + ∂̄k,s∂̄

∗
k,s. (21)

Of course, from (17), (20), we have

�
(q)
ω,kφ(s

k ⊗ ekφα) = sk ⊗ ekφ�
(q)
k,sα, α ∈ A0,q(U). (22)

The localized Bergman projection Π
(q)
k,s : L

2
0,q(U,ω)∩E ′(U,

∧0,qX) → A0,q(U)

is defined by

Π
(q)
k,sα = e−kφs−kΠ(q)

k (ekφα⊗ sk). (23)

Thus, we see that Π
(q)
k,s : L

2
0,q(U,ω) ∩ E ′(U,

∧0,qX) → ker�
(q)
k,s. Let K

(q)
k,s be
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the Schwartz kernel of Π
(q)
k,s, i.e.,

(Π
(q)
k,sα)(z) =

∫

U
K

(q)
k,s(z, w)(α(w))ωn(w). (24)

We now give a local expression for localized Kodaira Laplacian.

Proposition 4. The localized Kodaira Laplacian �
(q)
k,s satisfies

�
(q)
k,s = ∂̄∗k,s∂̄k,s + ∂̄k,s∂̄

∗
k,s

=

n∑

j=1

1⊗ (Z∗
j + kZj(φ))(Zj + kZj(φ))

+
n∑

j,l=1

ǫ(ej)ι(el)⊗
[
Zj + kZj(φ), Z

∗
l + kZl(φ)

]

+O(1)(Z + kZ(φ)) +O(1)(Z∗ + kZ(φ)) +O(1), (25)

where Z + kZ(φ) indicates a remainder term of the form
∑n

j=1 aj(z)(Zj +

kZj(φ)) and aj(z) are some k-independent smooth functions, and similarly

for Z∗ + Z(φ). Also, O(1) indicates some zero order differential operators

which are independent of k.

Proof. By direct computation,

�
(q)
k,s = ∂̄∗k,s∂̄k,s + ∂̄k,s∂̄

∗
k,s

=

n∑

j,l=1

(ǫ(ej)⊗ (Zj + kZj(φ))(ι(e
l)⊗ (Z∗

l + kZl(φ))))

+ (ι(el)⊗ (Zl + kZl(φ)))(ǫ(e
j)⊗ (Zj + kZj(φ)))

+ ǫ(∂̄ej)ι(ej)ι(el)⊗ (Z∗
l + kZl(φ))

+ ι(el)ǫ(∂̄ej)ι(ej)⊗ (Zj + kZj(φ))

+ ǫ(∂̄ej)ι(ej)ǫ(el)ι(∂̄el) + ǫ(el)ι(∂̄el)ǫ(∂̄ej)ι(ej). (26)

Now, we combine the first two terms as

(ǫ(ej)ι(el) + ι(el)ǫ(ej))((Zj + kZj(φ))(Z
∗
l + kZl(φ)))

+ǫ(ej)ι(el)[Zj + kZj(φ), Z
∗
l + kZl(φ)]

=〈ej |el〉((Zj + kZj(φ))(Z
∗
l + kZl(φ)) + ǫ(ej)ι(el)[Zj + kZj(φ), Z

∗
l + kZl(φ)]
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=δjl(Zj + kZj(φ))(Z
∗
l + kZl(φ)) + ǫ(ej)ι(el)[Zj + kZj(φ), Z

∗
l + kZl(φ)]. ���

We define the concept of k-negligible kernels or k-negligible operators.

Definition 3. A k-dependent continuous linear operator Ak : L
2
0,q(X,L

k) →
L2
0,q(X,L

k) is k-negligible if it is smoothing for sufficiently large k and for any

α, β ∈ N
2n
0 , any N ∈ N, there exists a k-independent constant Cα,β,N,L > 0

such that the smooth kernel Ak(x, y) of Ak satisfying

∣∣∣∂αx ∂βxAk,s,t(x, y)
∣∣∣ ≤ Cα,β,N,Lk

−N , for k ≫ 1, (27)

locally uniformly on any compact subset L ⊂ U × V , where s, t are lo-

cal holomorphic trivialization of L over U, V , respectively, and Ak(x, y) =

Ak,s,t(x, y)s
k(x) ⊗ (tk)∗(y). Here, (tk)∗ is the metric dual of tk. If so, we

denote Ak ≡ 0modO(k−∞) or Ak ≡ 0modO(k−∞).

Notice that the condition of k-negligible is independent of the choice

of local trivializations s, t and local coordinates x, y. Also, by Sobolev

embedding, Ak is k-negligible if and only if Ak extends to an operator

from W r
comp(U,

∧0,qX ⊗ Lk) to W r+M
loc (V,

∧0,qX ⊗ Lk) with operator norm

O(k−N ), for any r ∈ R, M,N ∈ N.

3.2. Approximate Bergman kernel and semi-classical L2-estimates

Let x ∈ X(0), let U ⊂ X(0) be a local trivialization open set and x ∈ U .

We choose a local coordinate (U, z) centered at x and a local holomorphic

trivialization s of L on U so that Fact 3 holds. That is,

φ(z) = φ0(z) +O(|z|3), φ0(z) =

n∑

i=1

λi,x|zi|2, λi.x > 0,

ω(z) = ω0(z) +O(|z|), ω0(z) =

√
−1

2

n∑

i=1

dzi ∧ dz̄i, z ∈ U.

(28)

Identifying U as a bounded domain in Cn, we extend φ and ω by φ̂ and ω̂

to whole C
n by

φ̂ = φ0+θk(φ− φ0)︸ ︷︷ ︸
φ1

, ω̂ = ω0+θk(ω − ω0)︸ ︷︷ ︸
ω1

, and θk(z) = θ(k1/2−ǫz), (29)
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where θ ∈ C∞
c (Cn) is a cut-off function such that θ = 1 on B1/2(0) and

supp θ ⊂ B1(0). Thus, φ1 ∈ C∞
c (U,R), for any small ǫ > 0. Since U ⊂ X(0),

we know that φ is strictly plruisubharmonic, i.e., there exists C > 0 such that

∂2φ
∂zj∂z̄l

(z)ξjξ
l ≥ C|ξ|2, for any ξ ∈ C

n \ {0}, any z ∈ U . Thus, for sufficiently

large k, φ̂ is strictly plurisubharmonic on C
n. Let ω̂n := ω̂n/n! = λ(z)dm(z).

Then λ(z) = 1 outside Bkǫ−1/2(0). In other words,

ω̂ = ω, φ̂ = φ on Vk := B 1
2
kǫ−1/2(0)

ω̂ = ω0, φ̂ = φ0 on |z| > kǫ−1/2.

We then consider L2-space L2
0,q(C

n, ω̂) which is the completion ofA0,q
c (Cn)

with respect to the L2-norm given by

(f |g)ω̂ :=

∫

Cn

〈f |g〉ω̂(z)λ(z)dm(z), f, g ∈ A0,q
c (Cn).

Notation. In the remaining of this subsection, unless otherwise stated, we

will denote (·|·)ω̂ simply by (·|·) for the sake of brevity.

We now define the deformed Cauchy–Riemann operator ∂̄
kφ̂

:= ∂̄ +

kǫ(∂̄φ̂) : A0,q(Cn) → A0,q+1(Cn) and its formal adjoint ∂̄∗
kφ̂

= ∂̄∗ + kι(∂̄φ̂)

with respect to (·|·)ω̂ . Hence, as before, the deformed Kodaira Laplacian

is then defined by

△(q)

ω̂,φ̂
= ∂̄

kφ̂
∂̄∗
kφ̂

+ ∂̄∗
kφ̂
∂̄
kφ̂
. (30)

Note that the analogous formula (18) and (19) still hold:

∂̄
kφ̂

=
n∑

j=1

(
ǫ(ej)⊗ (Zj + kZj(φ̂)) + ǫ(∂̄ej)ι(ej)

)

∂̄∗
kφ̂

=

n∑

j=1

(
ι(ej)⊗ (Z∗

j + kZj(φ̂)) + ǫ(ej)ι(∂̄ej)
). (31)

Also, ∂̄
ω̂,kφ̂

= ∂̄k,s, ∂̄
∗
ω̂,kφ̂

= ∂̄∗k,s, and △(q)

ω̂,kφ̂
= �

(q)
k,s on Vk. For z ∈ C

n \ U ,

ω̂ = ω0, and thus bij(z) = δij = cij(z).
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From Proposition 4, we see that for q ≥ 1, α ∈ A0,q
c (Cn),

△(q)

ω̂,kφ̂
α =

n∑

j=1

1⊗ (Z∗
j + kZj(φ̂))(Zj + kZj(φ̂))α

+ k
n∑

j,l=1

ǫ(ej)ι(el)⊗ (ZjZl − Z∗
l Zj)(φ̂)α

+O(1)(Z + kZ(φ̂))α+O(1)(Z∗ + kZ(φ̂))α +O(1)α.

Therefore, we get

(△(q)

ω̂,kφ̂
α|α) =




n∑

j=1

1⊗ (Z∗
j + kZj(φ̂))(Zj + kZj(φ̂))α

∣∣∣∣∣∣
α




+ k




n∑

j,l=1

ǫ(ej)ι(el)⊗ (ZjZl − Z∗
l Zj)(φ̂)α

∣∣∣∣∣∣
α




+
(
O(1)(Z + kZ(φ̂))α+O(1)α

∣∣∣α
)
+
(
α|O(1)(Z+kZ(φ̂))α

)

≥‖(Z+kZ(φ̂))α‖2+k




n∑

j,l=1

ǫ(ej)ι(el)⊗ (ZjZl−Z∗
l Zj)(φ̂)α

∣∣∣∣∣∣
α




−
∣∣∣
(
O(1)(Z + kZ(φ̂))α|α

) ∣∣∣−
∣∣∣
(
α|O(1)(Z + k(φ̂))α

) ∣∣∣−
∣∣∣ (O(1)α|α)

∣∣∣,

where Z + kZ(φ̂) =
∑n

j=1 Zj + kZj(φ̂). By Cauchy–Schwartz inequality,

∣∣∣
(
O(1)(Z + kZ(φ̂))α|α

) ∣∣∣ ≤ 1

2

(
ǫ
∥∥∥O(1)(Z + kZ(φ̂))α

∥∥∥
2
+

1

ǫ
‖α‖2

)
,

∣∣∣ (O(1)α|α)
∣∣∣ ≤ 1

2

(
‖O(1)α‖2 + ‖α‖2

)
.

By the construction, these O(1) terms are supported in a compact set and

uniformly bounded in k. Hence, there exists a constant C ′ > 0 independent

of k so that

‖O(1)α‖2 ≤ C ′‖α‖2, ‖O(1)(Z + kZ(φ̂))α‖2 ≤ C ′‖(Z + kZ(φ̂))α‖2

and we choose ǫ > 0 so that ǫC ′ < 1. Also, since φ̂ is strictly plurisubhar-
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monic, there exists a k-independent constant C0 > 0 so that




n∑

j,l=1

ǫ(ej)ι(el)⊗ (ZjZl − Z∗
l Zj)(φ̂)α

∣∣∣∣∣∣
α


 ≥ C0‖α‖2.

Combining these estimates, we obtain

(△(q)

ω̂,kφ̂
α|α) ≥

(
1− ǫ

C ′

)
‖(Z + kZ(φ̂))α‖2

+

(
C0k −

1

ǫ
− C ′

2
− 1

)
‖α‖2, ∀α ∈ A0,q

c (Cn).

Therefore, for sufficiently large k, there exists a constant C independent of

k so that

(△(q)

ω̂,kφ̂
α|α) ≥ Ck‖α‖2, ∀α ∈ A0,q

c (Cn), q ≥ 1. (32)

We next consider Gaffney extension of △(q)

ω̂,kφ̂
and show that (32) holds for

any α ∈ Dom△(q)

ω̂,kφ̂
, for q ≥ 1. Gaffney extension for deformed Kodaira

Laplacian on (0, q)-forms is given by

Dom△(q)

ω̂,kφ̂
:= {α∈Dom(Ŝq)∩Dom(Ŝ†

q−1) :Sqα∈Dom(Ŝ†
q), Ŝ

†
q−1α∈Dom Ŝq−1}

△(q)

ω̂,kφ̂
α := Ŝ†

q Ŝqα+ Ŝq−1Ŝ
†
q−1α, ∀α ∈ Dom△(q)

ω̂,kφ̂
.

where Ŝq is the maximal extension (cf. [32, Lemma 3.1.1.]) of ∂̄
kφ̂

: A0,q(Cn)

→ A0,q+1(Cn) and Ŝ†
q−1 is the adjoint of Ŝq−1. It is known that Gaffney

extension △(q)

ω̂,kφ̂
is a self-adjoint, non-negative operator (cf. [32, Proposi-

tion 3.1.2]). Moreover, since △(q)

ω̂,kφ̂
has the same principal symbol as usual

Laplacian on C
n, we know that it is elliptic. By elliptic regularity, we know

that the L2-projection P(q)

ω̂,kφ̂
: L2

0,q(C
n, ω̂n) → ker△(q)

ω̂,kφ̂
is a smoothing op-

erator and thus has smoothing Schwartz kernel P
(q)

ω̂,kφ̂
. We call P

(q)

ω̂,kφ̂
the

approximate Bergman kernel for (0, q)-forms. Now, we show

Lemma 5 (Approximation Lemma). Let α ∈ Dom Ŝq∩Dom Ŝ†
q−1 ⊂ L2

0,q(C
n,

ω̂n). Then there exists a sequence {αj}∞j=1 ⊂ A0,q
c (Cn) such that

‖αj − α‖, ‖∂̄
kφ̂
αj − Ŝqα‖, ‖∂̄∗

kφ̂
αj − Ŝ†

q−1α‖ → 0, as j → ∞.
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Proof. First of all, we show that if χ ∈ C∞
c (Cn,R) is a test function,

then for any α ∈ Dom(Ŝq) ∩ Dom(Ŝ†
q−1), χα ∈ Dom(Ŝq) ∩Dom(Ŝ†

q−1). For

α ∈ Dom(Ŝq), we first claim that the Leibniz rule ∂̄
kφ̂
(χα) = χ∂̄

kφ̂
α +

∂̄
kφ̂
χ ∧ α holds in the distribution sense. To see this, observe that for any

β ∈ A0,q+1
c (Cn), γ ∈ A0,q

c (Cn),

(γ|∂̄∗
kφ̂
(χβ)) =(∂̄

kφ̂
γ|χβ) = (χ∂̄

kφ̂
γ|β)

=(∂̄
kφ̂
(χγ)− ∂̄

kφ̂
χ ∧ γ|β) = (γ|χ∂̄∗

kφ̂
β)− (γ|ι∂̄

kφ̂
χβ),

where ι(∂̄
kφ̂
χ) is the adjoint of ǫ(∂̄

kφ̂
χ) with respect to (·|·). Hence, ∂̄∗

kφ̂
(χβ) =

χ∂̄∗
kφ̂
β − ι∂̄

kφ̂
χβ. From this, we deduce that

∂̄
kφ̂
(χα)(β) := χα(∂̄∗

kφ̂
β) = α(χ∂̄∗

kφ̂
β)

= α(∂̄∗
kφ̂
(χβ)) + α(ι∂̄

kφ̂
χβ) = χ∂̄

kφ̂
α(β) + ∂̄

kφ̂
χ ∧ α(β).

Hence, ∂̄
kφ̂
(χα) = χ∂̄

kφ̂
α + ∂̄

kφ̂
χ ∧ α holds indeed in the distribution sense.

Therefore, since α ∈ Dom(Ŝq) and χ ∈ C∞
c (Cn), ∂̄

kφ̂
α ∈ L2

0,q(C
n) and

∂̄
kφ̂
χ = ∂̄χ+ kχ∂̄φ ∈ A0,q

c (Cn), we see that ∂̄
kφ̂
(χβ) ∈ L2

0,q+1(C
n). Next, for

α ∈ Dom(Ŝ†
q−1), we need to show that there exists constant C > 0 such that

∣∣∣(∂̄kφ̂u|χα)
∣∣∣ ≤ C‖u‖, ∀u ∈ Dom(Ŝq−1).

However,
∣∣∣(∂̄kφ̂u|χα)

∣∣∣ ≤ supz∈Cn |χ(z)|
∣∣∣(∂̄kφ̂u|α)

∣∣∣ ≤ C ′‖u‖. This shows that

χα ∈ Dom(Ŝ†
q−1).

Now, we can choose χ to belong to some partition of unity with compact

supports and decompose α =
∑n

j=1 χjα. It suffices to approximate each χjα

and thus we may assume that α supports in some compact set K. Then we

apply the standard regularization technique by convoluting the coefficients

of α by the mollifiers ρj(z) := j2nρ(jz), where ρ is the standard modifier on

C
n. The result then follows from the classical Lemma of Friedrichs (cf. [14]

Chapter VII, Lemma 3.3). ���

From above approximation Lemma and (32), we deduce that for q ≥ 1,

‖Ŝqα‖2 + ‖Ŝ†
q−1α‖2 ≥ Ck‖α‖2, ∀α ∈ Dom Ŝq ∩Dom Ŝ†

q−1.
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For α ∈ Dom△(1)

ω̂,kφ̂
, we also have (△(q)

ω̂,kφ̂
α|α) = (Ŝ†

q Ŝqα|α)+(Ŝq−1Ŝ
†
q−1α|α) =

‖Ŝqα‖2 + ‖Ŝ†
q−1α‖2. Thus, this implies that (32) extends to all elements in

Dom△(q)

ω̂,kφ̂
, i.e.,

(
△(q)

ω̂,kφ̂
α
∣∣∣α
)
≥ Ck‖α‖2, ∀α ∈ Dom△(q)

ω̂,kφ̂
, q ≥ 1. (33)

From this, we can prove

Corollary 6. The deformed Kodaira Laplacian

△(q)

ω̂,kφ̂
: Dom△(q)

ω̂,kφ̂
→ L2

0,q(C
n, ω̂) is bijective and has a bounded inverse.

Proof. First, it is clear from (33) that ker△(q)

ω̂,kφ̂
= 0. For surjectivity, given

any β ∈ L2
0,q(C

n, ω̂), we consider the a linear functional on im(△(q)

ω̂,kφ̂
) given

by ℓβ(△(q)

ω̂,kφ̂
α) = (α|β), for any α ∈ Dom△(q)

ω̂,kφ̂
.

Injectivity of △(q)

ω̂,kφ̂
implies that ℓβ is well-defined. Also, (33) implies

‖ℓ‖ ≤ ‖β‖
Ck . By Hahn–Banach Theorem, ℓβ extends to a bounded linear

functional on △(q)

ω̂,kφ̂
with the same norm. By Riesz representation Theorem,

there exists γ ∈ L2
0,1(C

n, ω̂) with ‖γ‖ ≤ ‖β‖
Ck such that (α|β) = ℓβ(△(q)

ω̂,kφ̂
α) =

(△(1)

ω̂,kφ̂
α|γ), for any α ∈ Dom△(q)

ω̂,kφ̂
. In other words, γ ∈ Dom(△(q)

ω̂,kφ̂
)† =

Dom△(1)

ω̂,kφ̂
and β = △(q)

ω̂,kφ̂
γ. This shows the first assertion. The second

assertion follows from (33) that ‖(△(q)

ω̂,kφ̂
)−1‖ ≤ 1

Ck . ���

Now, we turn to the L2-existence Theorem for ∂̄
kφ̂

on C
n.

Theorem 7. If α ∈ L2
0,1(C

n, ω̂) with ∂̄
kφ̂
α = 0 in the distribution sense,

then u = ∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1α solves ∂̄

kφ̂
u = α and we have the L2-estimate

‖u‖ ≤ 1√
Ck

‖α‖.

Proof. Since β := (△−1

ω̂,kφ̂
)−1α ∈ Dom(△

ω̂,kφ̂
), thus u = ∂̄∗

kφ̂
β ∈ Dom ∂̄

kφ̂
⊂

L2(Cn). The expression of u is legitimate. Then we have

∂̄
kφ̂
u = △(1)

ω̂,kφ̂
β − ∂̄∗

kφ̂
∂̄
kφ̂
β = α− ∂̄∗

kφ̂
∂̄
kφ̂
β.
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Now, we claim that ∂̄∗
kφ̂
∂̄
kφ̂
β = 0. To see this, we first compute that

∂̄
kφ̂
∂̄∗
kφ̂
∂̄
kφ̂
β = ∂̄

kφ̂
△(1)

ω̂,kφ̂
β = ∂̄

kφ̂
α = 0.

Hence, ∂̄∗
kφ̂
∂̄
kφ̂
β ∈ ker ∂̄

kφ̂
. Also, ∂̄∗

kφ̂
∂̄
kφ̂
β ∈ ker ∂̄∗

kφ̂
clearly. Therefore,

∂̄∗
kφ̂
∂̄
kφ̂
β ∈ ker△(1)

ω̂,kφ̂
. From (33), we know that ker△(1)

ω̂,kφ̂
= 0 and thus

∂̄
kφ̂
u = α. As for the last statement,

‖u‖2 =(∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1α|∂̄∗

kφ̂
(△(1)

ω̂,kφ̂
)−1α)

=
(
(△(1)

ω̂,kφ̂
)−1α|∂̄

kφ̂
∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1α

)
= ((△(1)

ω̂,kφ̂
)−1α|α) ≤ 1

Ck
‖α‖2. ���

From above Theorem, we deduce the following “Hodge decomposition”:

Theorem 8. Let P
ω̂,kφ̂

:= P(0)

ω̂,kφ̂
: L2(Cn, ω̂) → ker△(0)

ω̂,kφ̂
= ker(∂̄

kφ̂
) be the

orthogonal projection. Then it is given by

P
ω̂,kφ̂

= I − ∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
on C∞

c (Cn). (34)

Proof. First of all, for u ∈ C∞
c (Cn), we apply Theorem 7 to v := ∂̄

kφ̂
u

and thus u0 = ∂̄∗
kφ̂
(△

ω̂,kφ̂
)−1∂̄

kφ̂
u solves ∂̄

kφ̂
u0 = ∂̄

kφ̂
u. Therefore, u − u0 ∈

ker ∂̄
kφ̂
. Also, for any u ∈ ker(∂̄

kφ̂
), (I − ∂̄∗

kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
)u = u = P

ω̂,kφ̂
u.

This shows that

(I − ∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
)2u = u− ∂̄∗

kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
u.

Finally, we compute

(u− u0|u0) =(u|u0)− (u0|u0)
=(∂̄∗

kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
u|u)− (∂̄∗

kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
u|∂̄∗

kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
u)

=((△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
u|∂̄

kφ̂
u)− ((△1

ω̂,kφ̂
)−1∂̄

kφ̂
u|∂̄

kφ̂
u) = 0,

where ∂̄
kφ̂
∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
u = ∂̄

kφ̂
u as in the proof of Theorem 7. Therefore,

u−u0 ⊥ u0 and hence we conclude that u− ∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
u = P

ω̂,kφ̂
u. ���

Remark 1. Since P
ω̂,kφ̂

is a bounded operator on L2(Cn, ω̂), we actually
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know that the (34) holds on L2(Cn, ω̂) by density argument.

3.3. Symbolic calculus and asymptotic sum

To establish the asymptotic expansion for Bergman kernel, we develop

the related symbol space and its asymptotic sum in this section. We first

define a space of functions which is rapidly decreasing off-diagonal (cf. [28,

section 3.1]).

Definition 4. The space Ŝ(Rd×R
d) consists of functions a(x, y) ∈ C∞(Rd×

R
d) satisfying for any (α, β) ∈ N

2d
0 , there exists l = l(α, β, a) ∈ N such that

for any N > 0, there exists a constant C = Cα,β,N (a) > 0,

∣∣∣∂αx ∂βy a(x, y)
∣∣∣ ≤ C

(1 + |x|+ |y|)l(α,β)
(1 + |x− y|)N , ∀(x, y) ∈ R

d × R
d. (35)

Equivalently, (35) means that for any α, β ∈ N
d
0, there exists l =

l(α, β) ∈ N such that for any N > 0,

sup
x,y∈U

(1 + |x− y|)N
∣∣∣∂αx∂βy a(x, y)

∣∣∣
(1 + |x|+ |y|)l(α,β) <∞. (36)

Thus, if there exists N0 > 0 such that (36) holds for N > N0, then for

N ≤ N0,

sup
x,y∈U

(1 + |x− y|)N
∣∣∣∂αx ∂βy a(x, y)

∣∣∣
(1 + |x|+ |y|)l(α,β) ≤ sup

x,y∈U

(1 + |x− y|)N0

∣∣∣∂αx ∂βy a(x, y)
∣∣∣

(1 + |x|+ |y|)l(α,β) <∞.

In other words, it suffices to show the condition (35) for sufficiently large N .

Remark 2. One observes that if a ∈ Ŝ(Rd×R
d), then for each fixed x, y ∈ U ,

a(x, ·), a(·, y) ∈ S (Rd), the Schwartz space of rapidly decreasing functions.

Hence, for any α, β ∈ N
d
0, any a ∈ Ŝ(Rd×R

d), for fixed x, y ∈ U , ∂αx ∂
β
y a(x, ·)

and ∂αx ∂
β
y a(·, y) are integrable in x and y, respectively.

Now, for a smooth function a(x, y, k) with parameter k, recall that in

Definition 2, we have defined a kind a semi-classical symbol space. For

m ∈ R, a function a(x, y, k) ∈ Ŝm(Rd ×R
d) if
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(i) a(x, y, k) ∈ C∞(Rd × R
d), for each k ∈ N, and

(ii) for any(α, β) ∈ N
2d
0 , there exists l = l(α, β, a) ∈ N and k0 ∈ N such that

for any N > 0, there exists a constant C = Cα,β,N(a) > 0,

∣∣∣∂αx ∂βy a(x, y, k)
∣∣∣ ≤ Ckm+

|α|+|β|
2

(1 + |
√
kx|+ |

√
ky|)l(α,β)

(1 + |
√
k(x− y)|)N

, (37)

for any (x, y) ∈ R
d × R

d, any k ≥ k0.

Similarly, one only needs to verify (37) for N > N0, for some N0 > 0, and

(37) shows that for each fixed x, y ∈ R
d, k ∈ N, a(x, ·, k), a(·, y, k) ∈ S (Rd).

Clearly, if a(x, y) ∈ Ŝ(Rd × R
d), then a(

√
kx,

√
ky) ∈ Ŝ0(Rd × R

d) and

for any m ∈ R, kma(
√
kx,

√
ky) ∈ Ŝm(Rd × R

d). Also, it is clear that

Ŝm(Rd × R
d) ⊂ Ŝm

′
(Rd × R

d) if m < m′.

We define the space of symbols of rapidly decreasing in k by Ŝ−∞(Rd ×
R
d) :=

⋂
m∈R Ŝ

m(Rd×R
d). To define the asymptotic expansion in our case,

we need to establish the notion of asymptotic sum.

Theorem 9. Given any sequence {mj}∞j=0 with mj ց −∞ and aj(x, y, k) ∈
Ŝmj (Rd×R

d), there exists a(x, y, k) ∈ Ŝm0(Rd×R
d) such that for any q ∈ N0,

there exists k0(q) ∈ N such that if k ≥ k0,

a(x, y, k) −
q∑

j=0

aj(x, y, k) ∈ Ŝmq+1(Rd × R
d). (38)

Moreover, such a is uniquely modulo Ŝ−∞(Rd × R
d).

Proof. For any positive sequence {µj}∞j=0 with λj ր ∞, we define

τj,k = 1[0,1](µj/k).

For any α, β ∈ N
d
0 with |α| + |β| ≤ j, there exists lj ∈ N such that for any

N > 0, there exists a constant C = CN,j > 0 satisfying

|∂αx ∂βy aj(x, y, k)| ≤ CN,jk
mj+

j
2
(1 +

√
k|x|+

√
k|y|)lj

(1 + |
√
k(x− y)|)N

, ∀x, y ∈ R
d.
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Let ǫj be a positive sequence tending to 0 to be chosen later and

a(x, y, k) :=

∞∑

j=0

Aj(x, y, k), Aj(x, y, k) := aj(x, y, k)χ(k
1
2
−ǫjx, k

1
2
−ǫjy)τj,k,

(39)

where χ ∈ C∞
c (Rd × R

d) such that 0 ≤ χ ≤ 1, χ(x, y) = 1 for |x|, |y| ≤ 1,

and χ(x, y) = 0 for |x|, |y| ≥ 2

First of all, τj,k 6= 0 if and only if µj < k. Since µj ր ∞, for each

fixed k, there exists only finitely many j with µj < k. Hence, for each fixed

k ∈ N, (39) is a finite sum and hence a(x, y, k) ∈ C∞(Rd × R
d). Now, for

sufficiently large k so that τj,k = 1, we have

Aj(x, y, k)− aj(x, y, k) =

q∑

j=0

(χ(k
1
2
−ǫjx, k

1
2
−ǫjy)− 1)aj(x, y, k).

We claim that

Claim. For any a ∈ Ŝm(Rd×R
d) and ǫ > 0, a(x, y, k)(χ(k

1
2
−ǫx, k

1
2
−ǫy)−1) ∈

Ŝ−∞(Rd×R
d), i.e., given any r ∈ N, a(χ(k

1
2
−ǫx, k

1
2
−ǫy)−1) ∈ Ŝm−r(Rd×R

d).

Proof of Claim. The key is the following. For any M ∈ N, any α, β ∈ N
d
0,

there exists C = CM,α,β > 0 such that

|∂αx ∂βy χ(x, y)− 1| ≤ CM,α,β(|x|M + |y|M ), ∀x, y ∈ C
n. (40)

For the proof of (40), for |x|, |y| < 1, 1 − χ(x, y) = 0 and for |x|, |y| > 2,

1 − χ(x, y) = 1, the estimate holds obviously. For 1 ≤ |x|, |y| ≤ 2, we can

expand

χ(x, y)− 1 =
∑

0<|α|+|β|≤M

∂|α|+|β|χ
∂xα∂yβ

(0)xαyβ +
∑

|α|+|β|=M
Rαβ(x, y)x

αyβ,

where Rαβ ∈ C∞(Rd × R
d). Therefore, |∂αx ∂βy χ(x, y) − 1| ≤ Cα,β,M(|x|M +

|y|M ). Now, for any α, β ∈ N
d
0, any N > 0,

|∂αx ∂βy a(1− χ(k1/2−ǫx, k1/2−ǫy))|

≤
∑

α′+α′′=α,β′+β′′=β

C ′
α,βk

m+
|α′|+|β′|

2
(1 +

√
k|x|+

√
k|y|)l(α′,β′)

(1 +
√
k|x− y|)N
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× C ′′
α′′,β′′,M (|k 1

2
−ǫx|M+|α′′|+|β′′| + |k 1

2
−ǫy|M+|α′′|+|β′′|)

≤C3k
m−ǫM+|α|+|β| (1 +

√
k|x|+

√
k|y|)l1(α,β)+M

(1 +
√
k|x− y|)N

,

where l1(α, β) = maxα′+α′′=α,β′+β′′=β (l(α
′, β′) + |α′′|+ |β′′|+M). Now, we

choose M so that ǫM > r and thus a(1 − χ(k
1
2
−ǫx, k

1
2
−ǫy)) ∈ Ŝm−ǫM(Rd ×

R
d) ⊂ Ŝm−r(Rd × R

d). ���

As a result, Aj(x, y, k)−aj(x, y, k) ∈ Ŝ−∞(Rd×R
d) for sufficiently large

k. On the other hand, for any j ∈ N, any α, β ∈ N
d
0 with |α|+ |β| ≤ j, there

exists lj ∈ N such that

|∂αx ∂βy aj | ≤ Cjk
mj− j

2
(1 +

√
k|x|+

√
k|y|)lj

(1 +
√
k|x− y|)j

.

Now, we apply above estimates to

Aj(x, y, k) = aj(x, y, k)χ(k
1
2
−ǫjx, k

1
2
−ǫjy)τj,k and

|∂αx ∂βyAj(x, y, k)|

≤ Cjk
mj− j

2
− ǫjj

2
(1 +

√
k|x|+

√
k|y|)lj

(1 +
√
k|x− y|)j

sup
|α|+|β|≤j

|(∂αx ∂βy χ)(k
1
2
−ǫjx, k

1
2
−ǫjy)|.

Since χ supports in |x|, |y| ≤ 2, we see that
√
k|x|,

√
k|y| ≤ 2kǫj . Thus,

|∂αx ∂βyAj(x, y, k)| ≤ C ′
jk
mj− j

2
+ǫj lj(1 +

√
k|x− y|)−j .

We take ǫj so that kǫj lj−1 ≤ 1
2jC′

j
for sufficiently large k and hence

C ′
jk
mj− j

2
+ǫj lj ≤ 2−jkmj− j

2
+1.

Given α, β ∈ N
d
0, q ∈ N, we take N ≥ max{|α| + |β|, q + 1} and mN + 1 ≤

mq+1.

∣∣∣∂αx ∂βy (
∞∑

j=N

Aj)
∣∣∣ ≤

∞∑

j=N

C ′
jk
mj− j

2
+ǫj lj

(1 +
√
k|x− y|)j

≤
∞∑

j=N

kmq+1−N
2

2j(1 +
√
k|x− y|)N

≤ kmq+1− |α|+|β|
2

(1 +
√
k|x− y|)N

.
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Hence,

∣∣∣∂αx ∂βy (a−
q∑

j=0

aj)
∣∣∣ ≤

∣∣∣∂αx ∂βy (
∞∑

j=N

Aj)
∣∣∣+
∣∣∣∂αx ∂βy

q∑

j=0

(aj−Aj)
∣∣∣+
∣∣∣∂αx∂βy

N−1∑

j=q+1

Aj

∣∣∣.

Since χ ∈ Ŝ(Rd × R
d), Aj ∈ Ŝmj (Rd × R

d) (cf. Lemma 15). Also, previ-

ous argument and above claim show that
∑∞

j=N Aj ∈ Ŝmq+1(Rd × R
d) and

∑q
j=0(aj −Aj) ∈ Ŝ−∞(Rd × R

d), we see that

|∂αx ∂βy (a−
q∑

j=0

aj)| ≤ Cα,β,Nk
mq+1− |α|+|β|

2
(1 + |

√
kx|+ |

√
ky|)l(α,β)

(1 +
√
k|x− y|)N

.

In other words, a−∑q
j=0 aj ∈ Ŝmq+1 . ���

If a and {aj} satisfy the conclusion of the Theorem 9, we then write

a ∼ ∑∞
j=0 aj(x, y, k) and call a the asymptotic sum for {aj}∞j=1. Moreover,

we define:

Definition 5. The space Ŝmcl (R
d×R

d) of classical symbol of orderm consists

of function a(x, y, k) ∈ Ŝm(Rd × R
d) such that there exists a sequence aj ∈

Ŝ(Rd × R
d) for j ∈ N0 satisfying

a(x, y, k) ∼
∞∑

j=0

km− j
2 aj(

√
kx,

√
ky) (41)

Next, we define the quantization on symbol space Ŝm(Rd × R
d).

Definition 6. Given a ∈ Ŝm(Rd×R
d), we define a k-dependent continuous

linear operator Opk(a) ∈ L̂m(Rd) by

Opk(a)(u)(x) =

∫

Rd

a(x, y, k)u(y)dm(y). (42)

A k-dependent continuous linear operator Ak : C∞
c (Rn) → D′(Rd) is in the

class L̂m(Rd) if A = Opk(a) for some a(x, y, k) ∈ Ŝm(Rd × R
d).

In particular, Ak ∈ L̂m(Rd) implies the Schwartz kernel KAk
(x, y) =

a(x, y, k) ∈ C∞(Rd × R
d). Thus, Ak ∈ L̂m(Rd) is a smoothing operator for

any k ∈ N. Moreover, if a ∈ Ŝ−∞(Rd × R
d), then Opk(a) is k-negligible in
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the sense of Definition 3 obviously. Hence, we may extend the Definition 6

by Ak ∈ L̂m(Rd) if there exists a ∈ Ŝm(Rd × R
d) such that Ak − Opk(a) =

Opk(a1) with a1 ∈ Ŝ−∞(Rd × R
d).

We also define the subclass L̂mcl (R
d) ⊂ L̂m(Rd) by Ak ∈ L̂mcl (R

d) if

Ak−Opk(a) = Opk(a1), for some a ∈ Ŝmcl (R
d×R

d) and a1 ∈ Ŝ−∞(Rd×R
d).

For Ak = Opk(a) ∈ L̂mcl (R
d), we then define the principal symbol σ(Ak) by

the leading term a0(x, y) ∈ Ŝ(Rd × R
d) in the asymptotic sum (41).

Theorem 10. If Ak = Opk(a) ∈ L̂m(Rd), Bk = Opk(b) ∈ L̂m
′
(Rd), then

(i) The formal adjoint A∗
k ∈ L̂m(Rd) with A∗

k = Opk(a
∗), where

a∗(x, y, k) := a(y, x, k).

(ii) Ak ◦Bk ∈ L̂m+m′− d
2 (Rd × R

d) with Ak ◦Bk = Opk(a#b), where

(a#b)(x, y, k) :=

∫

Rd

a(x, t, k)b(t, y, k)dm(t), (43)

i.e., if a ∈ Ŝmcl (R
d×R

d), b ∈ Ŝm
′

cl (R
d×R

d), then a#b ∈ Ŝm+m′− d
2 (Rd×

R
d).

Proof. For (i), for u, v ∈ C∞
c (Rd), the formal adjoint A∗

k is given by

(Ak(u)|v) = (u|Akv). Hence, we compute A∗
k explicitly as

(Aku|v) =
∫

Rd

(∫

Rd

a(x, y, k)u(y)dm(y)

)
v(x)dm(x)

=

∫

Rd

∫

Rd

a(x, y, k)u(y)v(x)dm(y)dm(x)

=

∫

Rd

u(y)

∫

Rd

a(x, y, k)v(x)dm(x)dm(y)

=

∫

Rd

u(y)A∗
k(v)(y)dy.

This implies that (A∗
kv)(x) =

∫
Rd a(y, x, k)v(y)dm(y) and thus A∗

k = Opa∗ ,

where a∗(x, y, k) := a(y, x, k). Obviously, a∗ ∈ Ŝmcl (R
d × R

d) if a is.

For (ii), for each f ∈ C∞
c (Rd), (Bkf)(t) =

∫
Rd b(t, y, k)f(y)dy and thus

(Ak ◦Bk)(f)(x) =
∫

Rd

a(x, t, k)

(∫

Rd

b(t, y, k)f(y)dm(y)

)
dm(t)
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Observe that for fixed x ∈ R
d, k ∈ N, a(x, t, k)b(t, y, k)f(y) is integrable in

t and y. Therefore, by Fubini-Tonelli Theorem, we then have

(Ak ◦Bk)(f)(x) =
∫

Rd

(∫

Rd

a(x, t, k)b(t, y, k)dm(t)

)
f(y)dm(y)

=

∫

Rd

(a#b)(x, y, k)f(y)dm(y).

We then see that Ak◦Bk = Opa#b. Now, we show that a#b ∈ Ŝm+m′− d
2 (Rd×

R
d). To see this, for any α, β ∈ N

d
0,

∣∣∣∂αx ∂βy (a#b)
∣∣∣ ≤
∫

U

∣∣∣∂αx a(x, t, k)∂βy b(t, y, k)
∣∣∣dm(t)

≤Cα,β,Nkm+m′+
|α|+|β|

2

×
∫

Rd

(1+
√
k|x|+

√
k|t|)l(α,0)

(1 + |
√
k(x− t)|)N

(1+|
√
kt|+|

√
ky|)l′(0,β)

(1 + |
√
k(t− y)|)N

dm(t)

We make the change of variable s =
√
kt and thus dm(s) = k

d
2 dm(t). This

implies

∣∣∣∂αx ∂βy (a#b)
∣∣∣

≤Ckm+m′− d
2
+ |α|+|β|

2

∫

Rd

(1 +
√
k|x|+ |s|)l(α,0)

(1 + |
√
kx− s|)N

(1 + |s|+ |
√
ky|)l′(0,β)

(1 + |s−
√
ky)|)N

dm(s).

Let l(α, β) = max{l(α, 0), l′(0, β)}. We observe that for any M > 0,

(1 + |
√
kx− s|)M (1 + |

√
ky − s|)M

≥ (1 + |
√
k(x− y)|+ |

√
kx− s||

√
ky − s|)M

=(1 + |
√
k(x− y)|)M

(
1 +

|
√
kx− s||

√
ky − s|

1 +
√
k|x− y|

)M
≥ (1 +

√
k|x− y|)M

Hence, by taking M = N/2 and u = s−
√
kx, we can write

∣∣∣∂αx∂βy (a#b)
∣∣∣

≤C km+m′− d
2
+ |α|+|β|

2

(1 +
√
k|x− y|)N/2

∫

Rd

(1 +
√
k|x|+ |s|)l(α,β)(1 +

√
k|y|+ |s|)l(α,β)

(1 + |
√
kx− s|)N/2(1 + |

√
ky − s|)N/2

ds
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≤C km+m′− d
2
+

|α|+|β|
2

(1+
√
k|x−y|)N/2

∫

Rd

(1+2
√
k|x|+|u|)l(α,β)(1+

√
k|x|+

√
k|y|+|u|)l(α,β)

(1+|u|)N/2 du.

Hence, there exists N0 = N0(α, β, d) such that if N > N0, the integral

converges. By expanding the numerator of the integrand, we can find l′(α, β)

so that for any N > N0,

∣∣∣∂αx ∂βy (a#b)
∣∣∣ ≤ Cα,β,Nk

m+m′− d
2
+

|α|+|β|
2

(1 +
√
k|x|+

√
k|y|)l′(α,β)

(1 +
√
k|x− y|)N/2

.

Thus, a#b ∈ Ŝm+m′− d
2 (Rd × R

d). ���

3.4. Asymptotic expansion of approximate kernel

We now establish the asymptotic expansion of approximate Bergman

kernel P
(0)

ω̂,kφ̂
through the symbolic calculus presented in section 3.3.

We first consider the case P
(q)
ω0,kφ0

, where φ0 =
∑n

j=1 λj,x|zj |2, ω0 =
√−1
2

∑n
j=1 dz

j ∧dz̄j , which is the orthogonal projection L2
0,q(C

n) := L2
0,q(C

n,

ω0) → ker△ω0,kφ0 , where the analogous Laplacian △(q)
ω0,kφ0

is given by

△(q)
ω0,kφ0

:= ∂̄∗,ω0

kφ0
∂̄kφ0 + ∂̄kφ0 ∂̄

∗,ω0

kφ0
,

∂̄kφ0 := ∂̄ + kǫ(∂̄φ0), and ∂̄∗,ω0

kφ0
is the formal adjoint with respect to the

L2-inner product

(α|β)0 :=
∑′

|I|=J

∫

Cn

αIβIdm(z).

Let δk(z) =
z√
k
be the scaling map on C

n with inverse δ−1
k (z) =

√
kz. Then

for u ∈ C∞(Cn),

δk∂̄kφ0δ
−1
k u(z) = δk

(
n∑

i=1

(√
k
∂u

∂z̄i
(
√
kz) + k

∂φ0
∂z̄i

(z)u(
√
kz)

)
dz̄i

)

= δk

(
n∑

i=1

(√
k
∂u

∂z̄i
(
√
kz) + kλi,xz

iu(
√
kz)

)
dz̄i

)
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= δk

(
√
k

n∑

i=1

(
∂u

∂z̄i
(
√
kz) +

√
kλi,xz

iu(
√
kz)

)
dz̄i

)

=
√
kδkδ

−1
k (∂̄φ0u)(z) =

√
k∂̄φ0u(z).

Therefore, we can deduce that

∂̄φ0δk =
1√
k
δk∂̄kφ0 , ∂̄∗,ω0

φ0
δk =

1√
k
δk∂̄

∗,ω0

kφ0
. (44)

Hence, from (44) we get

△ω0,φ0δk =
1

k
δk△ω0,kφ0 . (45)

Using (45), if {σj(z)}dj=1, where d ∈ N0 ∪ {∞}, is an orthonormal ba-

sis of ker△ω0,kφ0 with respect to (·|·)ω0 , then δkσj satisfies △ω0,φ0δkσj =

1
kδk△ω0,kφ0σj = 0. Their inner product is given by

(δkσi|δkσj)ω0 =

∫

Cn

δkσi(w)δkσj(w)dm(w)=kn
∫

Cn

σi(w)σj(w)dm(w)=knδij .

This shows that {k−n
2 δkσj}dj=1 is an orthonormal basis for ker△ω0,φ0 . Since

Pω0,φ0 is the kernel of orthogonal projection onto ker△ω0,kφ0 , we know

Pω0,φ0(z, w)=k
−n

d∑

j=1

σj

(
z√
k

)
σj

(
z√
k

)
=k−nPω0,kφ0

(
z√
k
,
w√
k

)
. (46)

For Pω0,φ0 , we can compute it explicitly.

Proposition 11. The approximate Bergman kernel P
(0)
ω0,φ0

(z, w) is given by

P
(0)
ω0,φ0

(z, w) =
2nλ1,x · · ·λn,x

πn
e
∑n

j=1 λj,x(2zjwj−|zj|2−|wj |2).

Proof. First, we consider the trivial line bundle L = C × C
n over C

n

with weight |1|2
hL

= e−2φ0 . Its L2-section can be identified as the weighted

L2-space L2(Cn, e−2φ0dm), and the subspace of holomorphic sections is iden-

tified the subspace F , known as Bargmann–Fock space, consisting of entire
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functions f satisfying

‖f‖2ω0,φ0 =

∫

Cn

|f(z)|2e−2
∑n

j=1 λj,x|zj|2dm(z) <∞, ∂̄f = 0, ∀f ∈ F .

We denote KBF(z, w) by the Schwartz kernel of the orthogonal projection

ΠBF : L2(Cn, L) → H0(X,L), i.e.,

(ΠBFf)(z) = f(z) =

∫

Cn

KBF(z, w)(f(w))dm(w), ∀f ∈ H0(X,L).

Claim. KBF(z, w) =
2nλ1,x···λn,x

πn e2
∑n

j=1 λj,x(z
jwj−|wj |2).

Proof. For multi-index α = (α1, . . . , αn) ∈ N
n
0 , we let z

α := (z1)α1 . . . (zn)αn .

Clearly, ∂̄(zα) = 0, for any α ∈ N
n
0 . Hence, zα ∈ O(Cn). For α, β ∈ N

n
0 ,

using polar coordinate zj = rje
−√−1θj and Fubini–Torelli Theorem,

(zα|zβ)ω0,φ0 =

∫

Cn

zαz̄βe−2
∑n

j=1 λx,j |zj|2dm

=
n∏

j=1

[∫ ∞

0

∫ 2π

0
r
αj+βj+1
j e

√
−1(αj−βj)θje−2λx,jr2j dθjdrj

]
.

If αj 6= βj , then
∫ 2π
0 e

√
−1(αj−βj)θjdθj = 0. Hence, (zα, zβ) = 0 if α 6= β.

Now, observe that for l ∈ N,

∫ ∞

0
r2l+1e−2λr2dr =

1

2(2λ)l+1

∫ ∞

0
ule−udu =

Γ(l + 1)

2(2λ)l+1
=

l!

2(2λ)l+1
, (47)

where u = 2λr2. Therefore, the square of norm of zα is given by

‖zα‖2ω0,φ0 =

n∏

j=1

2παj !

2(2λj,x)αj+1 =
πnα!

2|α|+nλα+1
,

where λα+1 :=
∏n
j=1 λ

αj+1
j,x . As a result,

{
Ψα :=

√
2|α|+nλα+1

πnα! zα
}

α∈Nn
0

is an

orthonormal basis for F and KBF(z, w) is given by

KBF(z, w) =
∑

α∈Nn
0

Ψα(z)Ψα(w)e
−2φ0(w).
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We then compute that

KBF(z, w) =
∑

α∈Nn
0

2|α|+nλα+1

πnα!
zαwαe−2

∑n
j=1 λj,x|wj |2

=
∞∑

d=1

2d+n

πnd!

∑

|α|=d

d!

α!
(λz)αwαe−2

∑n
j=1 λj,x|wj |2

=
2nλ1,x · · ·λn,x

πn
e2

∑n
j=1 λj,x(z

jwj−|wj |2). ���

Now, observe that L2(Cn, e−2
∑n

j=1 λj,x|zj |2dm) and L2(Cn) is isometric

via u 7→ ueφ0(z). As in section 3.1, we know that

∂̄(ue
∑n

j=1 λj,x|zj |2) = e
∑n

j=1 λj,x|zj |2 ∂̄φ0u, ∀u ∈ C∞(Cn).

Therefore, Pω0,φ0 and ΠBF are related by Pω0,φ0 = e−φ0ΠBFe
φ0 , and their

Schwartz kernels have the relation

Pω0,φ0(z, w) =e
−φ0(z)KBF(z, w)e

φ0(w) (48)

=
2nλ1,x · · · λn,x

πn
e
∑n

j=1 λj,x(2zjwj−|zj |2−|wj|2). ���

Our goal is to obtain asymptotic of P
ω̂,kφ̂

. Recall that in (29), φ̂ =

φ0 + φ1 with φ1 ∈ C∞
c (Cn). We consider e−k(φ̂−φ0)u = e−kφ1u. Notice that

φ1 ∈ C∞
c (Cn) implies that

∫

Cn

|u|2e±2kφ1dm(z) <∞, ∀k ∈ N, u ∈ L2(Cn).

Hence, by similar argument as in Proposition 11, the map u 7→ ue−kφ1

defines an isometry on L2(Cn) → L2(Cn) which maps ker ∂̄kφ0 bijectively

onto ker ∂̄
kφ̂

with inverse map v 7→ ekφ1v. On the other hand, we consider

the change of base metric from ω0 to ω̂. Observe that ω̂ = ω0 + ω1 with ω1

supports in B
kǫ−

1
2
(0). This implies that the L2-norm ‖ · ‖ω0 and ‖ · ‖ω̂ are

equivalent and thus L2(Cn) = L2(Cn, ω̂). We may regard P
ω̂,kφ̂

: L2(Cn) →
ker ∂̄

kφ̂
.
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We then define an intermediate operator P̂ω0,kφ0 : L
2(Cn) → L2(Cn) by

P̂ω0,kφ0 = e−kφ1 ◦ Pω0,kφ0 ◦ ekφ1 . (49)

By uniqueness of Schwartz kernel, we see that its Schwartz kernel P̂ω0,kφ0(z, w)

is given by

P̂ω0,kφ0(z, w) = e−kφ1(z)Pω0,kφ0(z, w)e
kφ1(w). (50)

Now, we observe that

Lemma 12. P
ω̂,kφ̂

= P̂ω0,kφ0 ◦ Pω̂,kφ̂ and P̂ω0,kφ0 = P
ω̂,kφ̂

◦ P̂ω0,kφ0.

Proof. First, it is easy to see that the map u 7→ e−kφ1u sends ker ∂̄kφ0 onto

to ker ∂̄
kφ̂

and u 7→ ekφ1u sends ker ∂̄
kφ̂

onto to ker ∂̄kφ0 . By (34) and above

observation,

P̂ω0,kφ0 − P
ω̂,kφ̂

◦ P̂ω0,kφ0 =(I − P
ω̂,kφ̂

) ◦ P̂ω0,kφ0

= ∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
e−kφ1Pω0,kφ0e

kφ1 = 0;

P
ω̂,kφ̂

− P̂ω0,kφ0 ◦ Pω̂,kφ̂ = e−kφ1(I −Pω0,kφ0)e
kφ1 ◦ P

ω̂,kφ̂

= e−kφ1 ∂̄∗,ω0

kφ0
(△(1)

ω0,kφ0
)−1∂̄kφ0e

kφ1P
ω̂,kφ̂

= 0. ���

Moreover, let P̂∗,ω̂
ω0,kφ0

be the formal adjoint of P̂ω0,kφ0 with respect to

the norm (·|·)ω̂. By direct computation, we know that its Schwartz kernel is

given by

P̂ ∗,ω̂
ω0,kφ0

(z, w) = λ−1(z)ekφ1(z)Pkφ0(z, w)e
−kφ1(w)λ(w), (51)

where λ is the density of ω̂n

dm , i.e. ω̂n = λdm. If we define R := P̂∗,ω̂
ω0,kφ0

−
P̂ω0,kφ0 to measure the extent which P̂ω0,kφ0 is not formally self-adjoint with

respect to (·|·)ω̂ , then its Schwartz kernel is given by

R(z, w) = Pω0,kφ0(z, w)
(
λ−1(z)λ(w)ekφ1(z)−kφ1(w) − ekφ1(w)−kφ1(z)

)
. (52)

Now, if we take adjoint in the first formula in Lemma 12, we get

P
ω̂,kφ̂

= P
ω̂,kφ̂

◦ P̂∗,ω̂
ω0,kφ0

= P
ω̂,kφ̂

◦ (P̂ω0,kφ0 +R) = P̂ω0,kφ0 + P
ω̂,kφ̂

◦ R,
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where we use the second formula in Lemma 12 in the last line. We then get

P
ω̂,kφ̂

(I −R) = P̂ω0,kφ0 . (53)

Now, for any M ∈ N, if we multiply (I +R +R2 + · · · +RM−1) from the

right on the both sides of (53), then we obtain

P̂ω0,kφ0 + P̂ω0,kφ0 ◦ R+ · · ·+ P̂ω0,kφ0 ◦ RM−1 + P
ω̂,kφ̂

◦ RM = P
ω̂,kφ̂

. (54)

(54) is the key observation for establishing asymptotic expansion for P
ω̂,kφ̂

near (0, 0). We will now employ the symbolic calculus developed in previous

section to (54) to achieve this. First of all, from Proposition 11 and

2zjwj − |zj |2 − |wj |2 = −|zj − wj |2 + 2
√
−1Imzjwj , ∀z, w ∈ C

n,

we know that

Pω0,φ0(z, w) =
2nλ1,x · · ·λn,x

πn
e−

∑n
j=1 λj,x|zj−wj |2+2

√
−1Imzjwj ∈ Ŝ(Cn × C

n).

Therefore, Pω0,kφ0(z, w) = knPω0,φ0(
√
kz,

√
kw) ∈ Ŝncl(C

n × C
n). Now, we

show

Lemma 13. For ǫ ∈ [0, 1/6), we have

P̂ω0,kφ0(z, w) ∈ Ŝncl(C
n × C

n), R(z, w) ∈ Ŝ
n− 1

2
cl (Cn × C

n).

Proof. By our choice of φ1 and ω1 as in (29), we know that for |z|, |w| >
kǫ−1/2, P̂ω0,kφ0(z, w) = Pω0,kφ0(z, w) ∈ Ŝncl(C

n × C
n). For |z|, |w| < kǫ−1/2,

since φ1(z) = O(|z|3), |kφ1(z)| ≤ Ck|z|3 ≤ Ck−1/2|
√
kz|3. Since |z| <

kǫ−1/2, we see that |kφ1(z)| ≤ Ck3ǫ−1/2. This shows that

∣∣∣ekφ1(x)−kφ1(y)−1
∣∣∣≤Cek

3ǫ− 1
2 sup

|x|,|y|<k−1
2+ǫ

(k|x|3+k|y|3) ≤ Ck3ǫ−1/2ek
3ǫ− 1

2 , (55)

where x, y are the underlying real coordinates for z and w. Hence, if ǫ ∈
[0, 16), then 3ǫ− 1

2 < 0. Therefore, P̂ω0,kφ0 ∈ Ŝn(Cn × C
n). Furthermore,

∣∣∣ekφ1(x)−kφ1(y) −
N∑

l=1

(kφ1(x)− kφ1(y))
l

l!

∣∣∣
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.

∫ 1

0
|kφ1(x)− kφ1(y)|Nekφ1(tx)−kφ1(ty)dt

.k(N+1)(3ǫ−1/2)ek
3ǫ−1/2

. (56)

This shows that P̂ω0,kφ0 ∈ Ŝncl(C
n × C

n). Now, if we expand λ(x)λ−1(y) in

Taylor expansion:

λ−1(x)λ(y) =1 +

N−1∑

j=1

∑

|α|+|β|=j

∂αx ∂
β
y (λ−1(x)λ(y))(0, 0)

(α+ β)!
xαyβ

+N

∫ 1

0
(1− t)N−1

∑

|α|+|β|=N

∂αx ∂
β
y (λ−1(x)λ(y))(tx, ty)xαyβ

(α+ β)!
dt.

This shows that

λ(y)

λ(x)
− 1−

N−1∑

j=1

k−
j
2

∑

|α|+|β|=j

∂αx ∂
β
y (λ−1(x)λ(y))(0, 0)

(α+ β)!
(
√
kx)α(

√
ky)β

= O(k−
N
2 ). (57)

Hence, we get

|R(z, w)| ≤|Pω0,kφ0(z, w)|
(∣∣∣λ−1(z)λ(w) − 1

∣∣∣
∣∣∣ekφ1(z)−kφ1(w)

∣∣∣

+
∣∣∣ekφ1(z)−kφ1(w) − ekφ1(w)−kφ1(z)

∣∣∣
)

≤|Pω0,kφ0(z, w)|
(∣∣∣λ−1(z)λ(w) − 1

∣∣∣(1 + Ck3ǫ−1/2ek
3ǫ− 1

2 )

+ 2Ck3ǫ−1/2ek
3ǫ− 1

2
)
.

The derivative estimate of R follows similarly as above. This shows that

R ∈ Ŝn−
1
2 (Cn × C

n) if ǫ ∈ [0, 16). Moreover, (56) and (57) shows that

R ∈ Ŝn−
1
2

cl (Cn × C
n). ���

From Theorem 10, we know that for any j ∈ N and Rj := R#j,

P̂ω0,kφ0#Rj ∈ Ŝ
n−j/2
cl (Cn × C

n).

Before proving our main result for this section, we need to first show that

the remainder kernel P
ω̂,kφ̂

#R#j for P
ω̂,kφ̂

◦ Rj in (54) is well-defined.
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Lemma 14. Let Rj := R#j be the Schwartz kernel of Rj . Then P
ω̂,kφ̂

◦ Rj

is well-defined as a smoothing operator with smoothing kernel P
ω̂,kφ̂

#Rj, for

any j ∈ N.

Proof. For any α, β ∈ N
2n
0 any x0, y0 ∈ C

n, by Cauchy–Schwartz inequality,

∣∣∣∂αx ∂βy
∫

Cn

P
ω̂,kφ̂

(x0, u)Rj(u, y0)dm(u)
∣∣∣

≤
∫

Cn

|∂αxPω̂,kφ̂(x0, u)||∂
β
yRj(u, y0)|dm(u)

≤
(∫

Cn

|∂αxPω̂,kφ̂(x0, u)|
2dm(u)

)1/2(∫

Cn

|∂βyRj(u, y0)|2dm(u)

)1/2

.

First of all, since Rj ∈ Ŝn−j/2(Cn × C
n), we know that Rj(·, y) ∈ S (R2n)

for fixed y0 and thus (∂βyRj)(·, y0) ∈ L2(Cn), for any β ∈ N
2n
0 . On the other

hand, since ‖ · ‖ω0 and ‖ · ‖ω̂ are equivalent, there exists a constant C > 0

such that

∫

Cn

|∂αxPω̂,kφ̂(x0, u)|
2dm(u) ≤C

∫

Cn

|∂αxPω̂,kφ̂(x0, u)|
2ω̂n(u)

=C∂αx∂
α
y Pω̂,kφ̂(x0, x0) <∞.

It is clear that P
ω̂,kφ̂

#Rj is the Schwartz kernel of P
ω̂,kφ̂

◦ Rj and thus

P
ω̂,kφ̂

◦ Rj is a smoothing operator, for P
ω̂,kφ̂

#Rj is smooth. ���

Hence, the kernel version of (54) is well-defined:

P̂ω0,kφ0 + P̂ω0,kφ0#R+ · · ·+ P̂ω0,kφ0#RM−1 + P
ω̂,kφ̂

#RM

=P
ω̂,kφ̂

,∀M ∈ N. (58)

Also, we need the following simple observation. Let χ, χ̃ ∈ C∞
c (Cn) with

suppχ ⊂ B1(0), supp χ̃ ⊂ B2(0), χ̃ = 1 on suppχ, χ = 1 on B1/2(0).

and set χk(z) := χ(8k1/2−ǫz) and χ̃k(z) := χ̃(8k1/2−ǫz).

Lemma 15. For any a ∈ Ŝm(Cn×C
n), χ̃k(x)a(x, y, k)χk(y) ∈ Ŝm(Cn×C

n).
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Proof. For any α, β ∈ N
n
0 , we estimate

|∂αx ∂βy a(x, y, k)χ̃k(x)χk(y)| ≤ Cα,β
∑

α′≤α,β′≤β
|∂α′

x χ̃k||∂β
′

y χk||∂α−α
′

x ∂β−β
′

y a|.

Since a ∈ Ŝm(Cn×C
n), for each α−α′, β−β′, there exists l(α−α′, β−β′) ∈ N

such that for any N ∈ N, for any x, y ∈ C
n, we have

|∂α−α′

x ∂β−β
′

y a(x, y, k)|

≤Cα−α′,β−β′,Nk
m+ |α−α′|+|β−β′|

2
(1 +

√
k|x|+

√
k|y|)l(α−α′,β−β′)

(1 +
√
k|x− y|)N

.

On the other hand, we have |∂α′

x χ̃k| ≤ Cα′k|α
′|(1/2−ǫ) and

|∂βy χk| ≤ Cβ′k|β
′|(1/2−ǫ). Hence, we conclude that

|∂αx ∂βy a(x, y, k)χ̃k(x)χk(y)|

≤Cα,β,Nk
m+ |α|+|β|

2
(1 +

√
k|x|+

√
k|y|)l(α,β)

(1 +
√
k|x− y|)N

, ∀x, y ∈ C
n,

where l(α, β) := max{l(α− α′, β − β′) : α′ ≤ α, β′ ≤ β}. ���

We are ready to establish the asymptotic expansion of P
ω̂,kφ̂

near (0, 0).

Theorem 16. For ǫ ∈ [0, 1/6), we have

χ̃k(x)Pω̂,kφ̂(x, y)χk(y) ∈ Ŝncl(C
n ×C

n),

where χk, χ̃k as above.

Proof. We first show that χ̃kPω̂,kφ̂χk ∈ Ŝn(Cn×C
n). For z, w in a compact

set K of 0 ∈ C
n, by standard scaling technique (cf. [27, Theorem 4.3]), one

can prove that for any α ∈ N
2n
0 , there exists a constant C = CK > 0 such

that any u ∈ ker ∂̄
kφ̂
,

|(∂αx u)(z)| ≤ Cα,Kk
n+|α|

2 ‖u‖ω̂, ∀z ∈ K.

Let {Ψj}dkj=1 be an orthonormal basis of ker△
ω̂,kφ̂

with respect to (·|·)ω̂. Fix
α ∈ N

2n
0 and x0 ∈ K, we may assume that

∑dk
j=1 |∂αxΨj(x0)|2 6= 0. We then
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set

u(z) :=

∑dk
j=1 (∂

α
xΨj)(x0)Ψj(z)

(∑dk
j=1 |∂αxΨj(x0)|2

) 1
2

.

Since P
ω̂,kφ̂

(z, w) =
∑dk

j=1Ψj(z)Ψj(w) is smooth, the sum
∑dk

j=1 |∂αxΨj(x0)|2

converges, and thus u ∈ ker△
ω0,kφ̂

and ‖u‖20 = 1. By above argument, there

exists a constant Cα,K so that




dk∑

j=1

|∂αxΨj(x0)|2



1
2

= |(∂αx u)(x0)| ≤ Cα,Kk
n+|α|

2 .

Since |∂αx ∂βy (Pω̂,kφ̂)(x0, x0)| is dominated by
(∑

j |∂αxΨj(x0)|2
)1/2 (∑

j |∂
β
yΨj(x0)|2

)1/2
,

|∂αx ∂βy (Pω̂,kφ̂)(x0, x0)| ≤ Cα,β,Kk
n+ |α|+|β

2 , (59)

and the same estimates holds for any z ∈ K with the same constant Cα,K .

Now, for off-diagonal estimates, we notice that |z| < 1
4k

−1/2+ǫ, |w| <
1
8k

−1/2+ǫ. Therefore, |z − w| < 5
8k

−1/2+ǫ. For any M ∈ N, we now multiply

χ̃k(x)χk(y) on the both sides of (58):

χ̃k(x)Pω̂,kφ̂(x, y)χk(y)

=χ̃k(x)(Pω̂,kφ̂#RM )(x, y)χk(y) +
M−1∑

j=0

χ̃k(x)P̂ω0,kφ0#Rj(x, y)χk(y).

By Lemma 15, we know that χ̃kP̂ω0,kφ0#Rjχk ∈ Ŝn−j/2(Cn × C
n). Hence,

given any N ∈ N, to estimate (1 +
√
k|z − w|)N |χ̃kPω̂,kφ̂χk|, it remains to

estimate (1 +
√
k|z − w|)N |χ̃kPω̂,kφ̂#RMχk|. We observe that

(1 +
√
k|z − w|)N χ̃k(z)

∣∣∣
∫

Cn

P
ω̂,kφ̂

(z, u)RM (u,w)dm(u)
∣∣∣χk(w)

≤
(
1+

5

8
kǫ
)N

CLk
n−M/2

∫

Cn

|P
ω̂,kφ̂

(z, u)|(1 +
√
k|u|+

√
k|w|)l

(1 +
√
k|u−w|)L

dm(u)
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≤
(
1+

5

8
kǫ
)N

CLk
n−M/2|P

ω̂,kφ̂
(z, z)|1/2

(∫

Cn

(1+
√
k|u|+

√
k|w|)2l

(1 +
√
k|u− w|)2L

dm(u)
)1/2

.

By above on-diagonal estimates, we know that |P
ω̂,kφ̂

(z, z)|1/2 . kn/2. Now,

as in the proof of Theorem 10, we make the change of variable t =
√
ku −

√
kw:

∫

Cn

(1 +
√
k|u|+

√
k|w|)2l

(1 +
√
k|u− w|)2L

dm(u) ≤ k−n
∫

Cn

(1 + |t|+ 2
√
k|w|)2l

(1 + |t|)2L dm(t).

By choosing L = l + 2n, we get

(1 +
√
k|z − w|)N χ̃k(z)

∣∣∣(Pω̂,kφ̂#RM )(z, w)
∣∣∣χk(w)

≤Cn,l(1 +
5

8
kǫ)Nkn−M/2(1 +

√
k|w|)l.

If we choose M > 2ǫN , then k−M/2(1 + 5
8k

ǫ)N ≤ 2N . Similar estimate

works for (1 +
√
k|z −w|)N |∂αx ∂βy (χ̃k(Pω̂,kφ̂#RM )χk)| with the same M but

now l may depends on α, β ∈ N
2n
0 . Hence, we conclude that χ̃kPω̂,kφ̂χk ∈

Ŝn(Cn × C
n).

Finally, we show that χ̃kPω̂,kφ̂χk ∈ Ŝncl(C
n × C

n). To see this, for any

α, β ∈ N
2n
0 , anyM,N ∈ N, above argument shows that one can findM ′ > M

so that

(1 +
√
k|z − w|)N

∣∣∣∂αx ∂βy χ̃k(x)(Pω̂,kφ̂#RM ′)(x, y)χk(y)
∣∣∣

≤Cα,β,Nkn−
M
2 (1 +

√
k|z|+

√
k|w|)l(α,β).

Therefore, by Lemma 15 and above estimate,

χ̃k(x)Pω̂,kφ̂(x, y)χk(y)−
M∑

j=0

χ̃k(x)P̂ω0,kφ0#Rj(x, y)χk(y)

=χk(x)(Pω̂,kφ̂#RM ′)(x, y)χk(y) +

M ′−1∑

j=M+1

χ̃k(x)P̂ω0,kφ0#Rj(x, y)χk(y)
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is in Ŝn−M/2(Cn × C
n). In view of Theorem 9, we conclude that

χ̃k(x)Pω̂,kφ̂(x, y)χk(y) ∼
∞∑

j=0

χ̃k(x)P̂ω0,kφ0#Rj(x, y)χk(y)

and thus χ̃k(x)Pω̂,kφ̂(x, y)χk(y) ∈ Ŝncl(C
n × C

n). ���

3.5. Localization of global Bergman kernel

In this section, we complete the proof of Theorem 1 by localizing global

Bergman kernel to the approximate Bergman kernel whose asymptotic ex-

pansion is already established in section 3.4.

Our goal is to establish the relation between Πk,s and P
ω̂,kφ̂

. To achieve

this, we need to modify approximate Bergman kernel to a kernel defined on

U . First, we consider a sequence of bump functions {ψi}∞i=1 ⊂ C∞
c (U, [0, 1])

such that for any compact set K ⊂ U , K ∩ suppψi 6= ∅, for only finitely

many i, and
∑∞

i=1 ψi = 1 on U , and we define

η(z, w) :=
∑

suppψi∩suppψj 6=∅
ψi(z)ψj(w) (60)

Lemma 17. η is smooth and η ≡ 1 on a neighborhood Ω of the diagonal

∆U ⊂ U × U . Furthermore, the projection supp η → U on both z and w

directions are proper maps.

Proof. Clearly, it suffices to prove that η is smooth on a neighborhood

of any (x0, y0) ∈ U × U . For any (x0, y0) ∈ U × U , any neighborhoods

W,W ′ ⋐ U of x0 and y0, respectively. By construction of {ψi}, we know

that there exist only finitely many i, j ∈ N such that suppψi ∩W 6= ∅ and

suppψj ∩W ′ 6= ∅. Therefore, the sum in (60) is a finite sum on W ×W ′ and
thus η ∈ C∞(W ×W ′). For the second assertion, observe that

1− η(z, w) =

∞∑

i=1

ψi(z) − χ(z, w) =

∞∑

i=1

ψi(z)




∞∑

j=1

ψj(w)


 − χ(z, w)

=

∞∑

i,j=1

ψi(z)ψj(w)−
∑

suppψi∩suppψj 6=∅
ψi(z)ψj(w)
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=
∑

suppψi∩suppψj=∅
ψi(z)ψj(w).

If 1 − η(z, w) 6= 0, then ψi(z) 6= 0 and ψj(w) 6= 0, for some pair (i, j) with

suppψi ∩ suppψj = ∅. We know that for such pair (i, j), z ∈ suppψi and

w ∈ suppψj and thus (z, w) ∈ suppψi × suppψj . This shows that

supp(1− η) =
⋃

suppψi∩suppψj=∅
suppψi × suppψj ,

and thus the intersection of supp(1−η) with the diagonal of U×U is empty.

Furthermore, for each z0 ∈ V , if z0 ∈ suppψi0 , then there exists only finitely

many j1, . . . , jN such that suppψi0 ∩ suppψjl 6= ∅, for l = 1, . . . , N . Thus,

we can pick a neighborhood W of z0 such that W ∩⋃Nl=1 suppψjl = ∅. This
shows that (W × W ) ∩ supp(1 − η) = ∅. As a result, η ≡ 1 on an open

neighborhood Ω of the diagonal.

Finally, for each compact set K ⊂ U , the pre-image of it under the first

projection is then given by (K ×U)∩ supp η. Since there exists only finitely

many index i1, . . . , iN such that suppψil ∩K 6= ∅, for l = 1, . . . , N , and for

each l = 1, . . . , N , there exists only finitely many jl,m, for m = 1, . . . ,M ,

such that suppψil ∩ suppψjl,m 6= ∅. This shows that

supp η ∩ (K × U) = (K × U) ∩
⋃

suppψi∩suppψj 6=∅
suppψi × suppψj

=
N⋃

l=1

suppψil ×
M⋃

m=1

suppψjl,m,

and thus supp η ∩ (K × U) is compact. The proof for second projection is

the same. ���

We define localized approximate projection Π̂k : L
2
comp(U,ω) → L2(U,ω)

by

(Π̂ku)(z) =

∫

U
P
ω̂,kφ̂

(z, w)η(z, w)u(w)ωn(w) (61)

whose Schwartz kernel is given by K̂k(z, w) = P
ω̂,kφ̂

(z, w)η(z, w). By Lemma

17, we know that the projections (z, w) ∈ supp η → w ∈ U is proper,

and thus η(z, w)u(w) also has compact support in z. This shows that
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Π̂k : L2
comp(U,ω) → L2

comp(U,ω). On the other hand, by the properness of

(z, w) ∈ supp η → w ∈ U , we know that for u ∈ L2(U,ω), any τ ∈ C∞
c (U),

τ(z)(Π̂ku)(z) ∈ L2(U,ω). This implies that Π̂k : L
2(U,ω) → L2

loc(U,ω).

On the other hand, we also define localized approximate projection Π̃k :

L2(U,ω) → L2
comp(U,ω) concentrated near origin by

(Π̃ku)(z) := χ̃k(z)(Π̂k(χku))(z), (62)

where χ̃k(z) = χ̃(8k1/2−ǫz), χk(z) = χ(8k1/2−ǫz) and

suppχk ⊂ B1(0), supp χ̃ ⊂ B2(0), χ̃ = 1 on suppχ, χ=1 on B1/2(0).

By construction, we know that supp χ̃k, suppχk ⊂ Vk. We denote K̃k(z, w)

by the Schwartz kernel of Π̃k. Therefore, we have

K̃k(z, w) = χ̃k(z)K̂k(z, w)χk(w) = χ̃k(z)Pω̂,kφ̂(z, w)η(z, w)χk(w).

We first prove a crucial result which is important in our later arguments.

Theorem 18. For ǫ ∈ (0, 1/6), (1 − χ̃k)Pω̂,kφ̂χk is a k-negligible operator

in the sense of Definition 3.

In view of Definition 3, it suffices to prove that for any l,N ∈ N, any

compact set K ⊂ C
n × C

n, ‖(1 − χ̃k(x))Pω̂,kφ̂(x, y)χk(y)‖Cl(K) ≤ CN,lk
−N ,

for some constant CN,l > 0 independent of k. We first prove a lemma.

Lemma 19. For any m ∈ R, a ∈ Ŝm(Cn × C
n),

(1− χ̃k(z))Pω̂,kφ̂(z, w)χk(w) ≡ 0modO(k−∞).

Proof. Notice that (1 − χ̃k)aχk supports in (suppχk)
c × suppχk. Since

δ := d(supp(1− χ̃), suppχ) > 0, we only need to consider

|w| < 1

8
k−1/2+ǫ, |z| > 1

8
k−1/2+ǫ, and |z − w| ≥ 1

8
k−

1
2
+ǫδ.

Now, given any α, β ∈ N
2n
0 , any L ∈ N, since a ∈ Ŝm(Cn ×C

n), we have the

following esimtate

∣∣∣∂αx ∂βy (1− χ̃k)aχk

∣∣∣ ≤ Cα,β,Lk
m+

|α|+|β|
2

−ǫ(|α|+|β|) (1 +
√
k|z|+

√
k|w|)l(α,β)

(1 +
√
k|z − w|)L

.
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Now, given any compact set K ⊂ C
n × C

n with (suppχk)
c × suppχk, we

may assume 1
8k

−1/2+ǫ < |z| ≤ R, for some R := RK > 0 depending on K.

Hence, we get

∣∣∣∂αx∂βy (1− χ̃k)aχk

∣∣∣ ≤Cα,β,Lk
m+

|α|+|β|
2

(1 + |k|ǫ +
√
kR)l(α,β)

(1 + 8kǫδ)L

≤Cα,β,Nk
m+ |α|+|β|+l(α,β)

2 k−Lǫ(8δ)−LRl(α,β)

≤Cα,β,L,K(8δ)
−Lkm+ |α|+|β|+l(α,β)

2
−ǫL.

For any N ∈ N, we choose L >
m+

|α|+|β|+l(α,β)
2

+N

2ǫ . Therefore, we see that

∣∣∣∂αx ∂βy (1− χ̃k)aχk

∣∣∣ ≤ Cα,β,m,N,ǫ,Kk
−N . ���

Proof of Theorem 18. Now, if we multiply (58) by (1− χ̃k)(z)χk(w), then
by above Lemma,

(1− χ̃k)(z)P̂ω0 ,kφ0#Rjχk ≡ 0modO(k−∞),

for any j ∈ N. Similar to Lemma 14, we estimate

|(1 − χ̃k(z))|
∣∣∣
∫

Cn

P
ω̂,kφ̂

(z, u)RM (u,w)dm(u)
∣∣∣χk(w)

≤|1− χ̃k(z)|Pω̂,kφ̂(z, z)|
1/2CLk

n−M/2
(∫

Cn

(1+|t|+2
√
k|w|)2l

(1+|t|)2L
)1/2

|χk(w)|

≤CL,Kkn−
M
2
+ l

2 ≤ Cn,l,Kk
−N ,

where we choose L = L0(n, l) so that the integral converges and M > 2n +

l+2N , for any N ∈ N. The derivatives estimates proceeds in similar fashion

but l may depends on the degree of differentiation. In conclusion, for any

N ∈ N, any α, β ∈ N
2n
0 , there exists M > 2n + l(α, β) + 2N ∈ N and

Cn,α,β,K > 0 independent of k such that

sup
K

∣∣∣∂αx ∂βy (1− χ̃k)Pω̂,kφ̂#RMχk

∣∣∣ ≤ Cn,α,β,Kk
−N .

Hence, given any α, β ∈ N
2n
0 , any N ∈ N, we choose M > 2n + l(α, β, 2N)
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so that

sup
K

∣∣∣∂αx ∂βy (1− χ̃k(z))Pω̂,kφ̂(z, w)χk(w)
∣∣∣

≤
M−1∑

j=0

sup
K

∣∣∣∂αx∂βy (1− χ̃k)(z)(P̂ω0 ,kφ0#Rj)(z, w)χk(w)
∣∣∣

+ sup
K

∣∣∣∂αx ∂βy (1− χ̃k)(Pω̂,kφ̂#RM)(z, w)χk(w)
∣∣∣

≤Cα,β,K,Nk
−N . ���

Remark 3. Notice that the condition on Lemma 19 can be relaxed. We

actually proved that χkPω̂,kφ̂τk ≡ 0modO(k−∞), for χk ∈ C∞
c (Cn, [0, 1]),

τk ∈ C∞(Cn, [0, 1]) with d(suppχk, supp τk) >
1
8k

−1/2+ǫδ, for some δ > 0

independent of k. Particularly, we can exchange the role of 1 − χ̃k and χk.

Also, by Theorem 8, we see that

(1− χ̃k)Pω̂,kφ̂χk = −(1− χ̃k)∂̄
∗
kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
χk ≡ 0modO(k−∞). (63)

Theorem 20. �
(0)
k,sΠ̃k is k-negligible, i.e., �

(0)
k,sΠ̃k ≡ 0modO(k−∞) on U .

Proof. It suffices to prove ∂̄k,sΠ̃k ≡ 0modO(k−∞) on L2(U,ω). In view of

Definition 3, it remains to prove that

∂̄k,s

(
χ̃k(z)Pω̂,kφ̂(z, w)η(z, w)χk(w)

)
≡ 0modO(k−∞), on U.

To see this, we write

χ̃k(z)Pω̂,kφ̂(z, w)η(z, w)χk(w)

=χ̃k(z)Pω̂,kφ̂(z, w)χk(w) + (1− η(z, w))χ̃k(z)Pω̂,kφ̂(z, w)χk(w)

For the latter term, from the proof of Lemma 17, we see that

(1− η(z, w))χ̃k(z)Pω̂,kφ̂(z, w)χk(w)

=
∑

suppψi∩suppψj=∅
ψi(z)χ̃k(z)Pω̂,kφ̂(z, w)χk(w)ψj(w).

Now, notice that the proof of Theorem 18 works for ψi(z)χ̃k(z) and
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ψj(w)χk(w) (cf. Remark 3), and thus we see that

(1− η(z, w))χ̃k(z)Pω̂,kφ̂(z, w)χk(w) ≡ 0modO(k−∞).

For the first term,

∂̄k,s(χ̃k(z)Pω̂,kφ̂(z, w)χk(w))

= (∂̄ + k∂̄φ)(χ̃k(z)Pω̂,kφ̂(z, w)χk(w))

= (∂̄χ̃k)(z)Pω̂,kφ̂(z, w)χk(w) + χ̃k(z)∂̄k,s(Pω̂,kφ̂(z, w))χk(w).

Since χk(w) supports in Vk and ω = ω̂, φ̂= φ on Vk, we have ∂̄k,s(Pω̂,kφ̂(z,

w)) = 0. On the other hand, Theorem 18 (cf. again Remark 3) shows that

(∂̄χ̃k)(z)Pω̂,kφ̂(z, w)χk(w) ≡ 0modO(k−∞). ���

Since Πk,s : L
2
comp(U,ω) → L2(U,ω) and Π̃k : L2(U,ω) → L2

comp(U,ω),

the composition Πk ◦ Π̃k,s : L2(U) → L2(U) makes sense. Recall that if the

local spectral gap condition (3) holds on an open set U ⊂ X(0). By local

unitary identification in section 3.1, we have

‖(I −Πk,s)u‖ω ≤ 1

Ckd
‖�(0)

k,su‖ω, u ∈ C∞
c (U). (64)

Hence, we can prove

Theorem 21. If the local spectral gap condition (3) holds on an open set

U ⊂ X(0), then the operator Πk,sΠ̃k − Π̃k is k-negligible on U .

Proof. For any u ∈ C∞
c (U), we have the following estimate for L2-norm.

‖(Πk,sΠ̃k − Π̃k)u‖ω = ‖(Πk,s − I)Π̃ku‖ω ≤ C−1k−d‖�(0)
k,sΠ̃ku‖ω.

Using Theorem 20, �
(0)
k,sΠ̃k ≡ 0modO(k−∞). Thus, for any N > 0, there

exists a k-independent constant C := CM,N > 0 so that ‖�(0)
k,sΠ̃ku‖ω. ≤

Ck−N‖u‖W−M ,ω, for any M > 0. Also, notice that �
(0)
k,s(Π̃k − Πk,sΠ̃k) =

�
(0)
k,sΠ̃k ≡ 0modO(k−∞). By elliptic estimate, for any u ∈ C∞

c (U), we know

that there exists a constant C > 0 independent of k and l > 0 so that for
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any m ∈ N, any N ∈ N,

‖(Πk,sΠ̃k − Π̃k)u‖W 2m,ω

≤Cklm(‖(�(0)
k,s)

m(Πk,sΠ̃k − Π̃k)u‖ω + ‖(Πk,sΠ̃k − Π̃k)u‖ω)
. klm(‖(�(0)

k,s)
mΠ̃ku‖ω + k−d‖�(0)

k,sΠ̃ku‖ω) . k−N‖u‖W−2m,ω,

for coefficient of �
(0)
k,s has at most polynomial growth in k. By density argu-

ment, above estimate holds for any u ∈ L2(U,ω) and thus

Πk,sΠ̃k − Π̃k :W
−2m(U,ω) → W 2m(U,ω)

has operator norm O(k−N ), for any m ∈ N and N ∈ N. We conclude that

Πk,sΠ̃k ≡ Π̃kmodO(k−∞). ���

On the other hand, we prove

Theorem 22. The operator χkΠ̂kχ̃kΠk,s − χkΠk,s is k-negligible on U .

An asymptotic upper bound of Πk,s is needed for Theorem 22.

Lemma 23. For any α, β ∈ N
2n
0 , there exists a constant Cα,β,U > 0 so that

∣∣∣∂αx ∂βy (Kk,s)(x
′, y′)

∣∣∣ ≤ Cα,β,Uk
n+

|α|+|β
2 , ∀x′, y′ ∈ U.

Proof. This proceeds similar to the proof of (59) in the first part of the

proof of Theorem 16. ���

Proof of Theorem 22. Since χk, χ̃k supports in Vk and ω̂ = ω, φ̂ = φ on

Vk, by Thoerem 8, for any u ∈ L2
comp(U,ω), we can write

(χkΠ̂kχ̃kΠk,su)(z) =
∑

suppψi∩suppψj 6=∅
χk(z)ψi(z)(Pω̂,kφ̂(ψjχ̃kΠk,su))(z)

=−
∑

suppψi∩suppψj=∅
χk(z)ψi(z)(Pω̂,kφ̂(ψjχ̃kΠk,su))(z)+χk(z)Pω̂,kφ̂(χ̃kΠk,su)(z)

=−
∑

suppψi∩suppψj=∅
χk(z)ψi(z)(Pω̂,kφ̂(ψjχ̃kΠk,su))(z)

+ χk(z)(I − ∂̄∗
kφ̂
(△(1)

ω̂,kφ̂
)−1∂̄

kφ̂
)(χ̃kΠk,su)(z)

=χk(z)(Πk,su)(z) −
∑

suppψi∩suppψj=∅
χk(z)ψi(z)(Pω̂,kφ̂(ψjχ̃kΠk,su))(z)
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− χk(z)∂̄
∗
kφ̂
(△(1)

ω̂,kφ̂
)−1(∂̄χ̃k)Πk,su)(z)−χk(z)∂̄∗kφ̂(△

(1)

ω̂,kφ̂
)−1χ̃k(∂̄kφ̂Πk,su)(z).

Applying Theorem 18 and Remark 3 to the last two terms, we have

∑

suppψi∩suppψj=∅
ψiPω̂,kφ̂ψj ≡ 0modO(k−∞),

χk∂̄
∗
kφ̂
(△(1)

ω̂,kφ̂
)−1(∂̄χ̃k) ≡ 0modO(k−∞).

Also, φ̂ = φ on Vk, χk(z)∂̄
∗
kφ̂
(△(1)

ω̂,kφ̂
)−1χ̃k(∂̄kφΠk,su)(z) = 0.

Combining with Lemma 23 which shows that derivatives of Kk,s is at

most polynomials in k, we see that

χk(z)Πk,s ≡ χkΠ̂kχ̃kΠk,smodO(k−∞). ���

Proof of Theorem 1. If we take adjoint in Theorem 22, we get

Πk,sχk ≡ Πk,sχ̃kΠ̂
∗,ω
k χkmodO(k−∞),

where Π̂∗,ω
k means the adjoint with respect to ω. As in the proof of Theorem

21 , since χk, χ̃k supports in Vk and ω̂ = ω, φ̂ = φ on Vk, we see that

χ̃kΠ̂
∗,ω
k χk = χ̃kΠ̂

∗,ω̂
k χk = χ̃kΠ̂kχk.

The last identity follows from P
ω̂,kφ̂

is self-adjoint (with respect to ω̂),

η(z, w) = η(w, z) = η(w, z), and K̂k(z, w) = P
ω̂,kφ̂

(z, w)η(z, w). By The-

orem 21 and the assumption that U satisfies local spectral gap, we conclude

that

Πk,sχk ≡ Πk,sΠ̃k ≡ Π̃kmodO(k−∞).

In terms of kernels, this shows that

Kk,s(z, w)χk(w) ≡ χ̃k(z)Pω̂,kφ̂(z, w)η(z, w)χk(w)modO(k−∞).

Since η(z, w) is k-independent, by multiplying η to (58), we see that

χ̃k(z)Pω̂,kφ̂(z, w)η(z, w)χk(w) ∈ Ŝncl(C
n × C

n)

and
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χ̃k(z)Pω̂,kφ̂(z, w)η(z, w)χk(w) ∼
∞∑

j=0

χ̃k(z)(P̂ω0,kφ0#R
#j)(z, w)η(z, w)χk(w).

Finally, by multiplying ρ on above, we have

ρ(z)χ̃k(z)Pω̂,kφ̂(z, w)η(z, w)χk(w) ≡ ρ(z)Kk,s(z, w)χk(w)modO(k−∞).

We see that

ρ(z)Kk,s(z, w)χk(w) ∈ Ŝncl(C
n × C

n)

as it is supported in U × Vk. ���

We also deduce Theorem 2.

Proof of Theorem 2. From the proof of Theorem 16, we know that

χ̃k(z)Pω̂,kφ̂(z, w)χk(w) ∼
∞∑

j=0

χ̃k(z)(P̂ω0,kφ0#R
#j)(z, w)χk(w)

and by Theorem 18, χ̃k(z)Pω̂,kφ̂(z, w)η(z, w)χk(w)≡Pω̂,kφ̂(z, w)χk(w). Hence,

ρ(z)Kk,s(z, w)χk(w) ∼ ρ(z)χ̃k(z)Pω̂,kφ̂(z, w)χk(w).

The first coefficient in the asymptotic sum is given by

P̂ω0,kφ0(z, w) =
2nknλ1,x · · ·λn,x

πn
ek

∑n
j=1 λj,x(2z

jwj−|zj|2−|wj |2)−k(φ1(z)−φ1(w)).

By (55), we know that 1− e−k(φ1(z)−φ1(w)) is of lower degree in k, we get

a0(z, w) =
2nλ1,x · · ·λn,x

πn
e
∑n

j=1 λj,x(2z
jwj−|zj|2−|wj|2). ���
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Sup. (4), 15 (1982), No.3, 457-511.

14. Jean-Pierre Demailly, Complex analytic and algebraic geometry,
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf,
2012.

15. Michael R. Douglas and Semyon Klevtsov, Bergman kernel from path integral, Comm.
Math. Phys., 293 (2010), No.1, 205-230.

16. Xianzhe Dai, Kefeng Liu, and Xiaonan Ma, On the asymptotic expansion of Bergman
kernel, J. Differential Geom., 72 (2006), No.1, 1-41.

17. S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom.,
59(2001), No.3, 479-522.

18. Harold Donnelly, Spectral theory for tensor products of Hermitian holomorphic line
bundles, Math. Z., 245 (2003), No.1, 31-35.

https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf


✐

“BN17N11” — 2022/4/14 — 15:47 — page 50 — #50
✐

✐

✐

✐

✐

50 YU-CHI HOU [March

19. Simon Donaldson and Song Sun, Gromov-Hausdorff limits of Kähler manifolds and
algebraic geometry, Acta Math., 213 (2014), No.1, 63-106.

20. G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann com-
plex. Annals of Mathematics Studies, No. 75. Princeton University Press, Princeton,
N.J.; University of Tokyo Press, Tokyo, 1972.

21. Matthew P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans.
Amer. Math. Soc., 78 (1955), 426-444.

22. Phillip Griffiths and Joseph Harris, Principles of Algebraic Geometry, Pure and Ap-
plied Mathematics. Wiley-Interscience [John Wiley & Sons], New York, 1978.
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33. Xiaonan Ma and George Marinescu, Generalized Bergman kernels on symplectic man-
ifolds, Adv. Math., 217 (2008), No.4, 1756-1815.

34. Xiaonan Ma and George Marinescu, Berezin-Toeplitz quantization on Kähler mani-
folds, J. Reine Angew. Math., 662 (2012), 1-56.
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