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Abstract

In this paper we present a class of parabolic equation with nonlinear nonlocal condi-

tions of second type where we show two part of this study the theoretical part we prove the

existence and uniqueness of the solution by energy inequality method. Then the numerical

part where we study the consistence and stability of solution.

1. Introduction

The most famous problems are Heat distribution problems which are

considered among the ancient problems studied by many researchers, where

the study was done on different domain types. When we consider one-

dimensional heat conduction problems of a nonhomogeneous we can solve it

easily with condition Neumann or Dirichlet or a mix between them like.























∂u
∂t

− a∂2u
∂x2 = f(x, t), x, t ∈ Q

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1

ux(0, t) = 0, 0 ≤ t ≤ T

ux(1, t) = 0. 0 ≤ t ≤ T

.
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However, many researchers have asked how to find a solution to the

problem of the distribution of heat in complex domain and with more com-

plex conditions, as an example of some mathematicians taking the integral

conditions of their first and second types, which can modeled a lot of prob-

lems in different domains like biology, physics, mechanics and technology...

Those conditions are encountered in various applications such as popu-

lation dynamics, blood-flow models, chemical engineering and cellular sys-

tems. Moreover, boundary value problems with integral conditions originat-

ing from various engineering disciplines are of growing interest. That is a

large number of physical phenomena and many problems in modern physics

and technology can be described in terms of nonlocal problems, such as

problems in partial differential equations with integral conditions. A large

number of problems in modern physics and technology are stated using non-

local conditions for partial differential equations, which are described using

integral conditions [3], [4] and [5]. It is however of the first type

∫

Ω
u(x, t) = E(t),

∫

Ω
k(x, t)u(x, t)dx = 0,

where t ∈ (0, T ) , Ω ⊂ R
n and k is a given function. Or second type,

where the Dirichlet or Neumann condition modelling by integral condition,

for example

u(x, t)|∂Ω =

∫

k(x, t)u(x, t)dx,

can be used when it is impossible to directly measure the sought quantity

on the border, its total value or its average is known. To motivate this, we

generalized the integral conditions of the second kind to more general ones

by making them nonlinear, and this increased the difficulty of the study,

especially since the field of study of heat diffusion became more complex.

And this is what we focused on in this article, where in the second part we

studied the uniqueness and the existence theorical by the functional method

and then we search the numerical solution by applying the compact finite

difference technique.
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2. Formulation and Treatment of the Problem

2.1. Position of the problem

In the rectangular domain Q = Ω× (0, T ), with Ω = (0, 1) and T <∞,

we consider the following problem :











































∂u

∂t
− a

∂2u

∂x2
= f(x, t), x, t ∈ Q

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1

ux(0, t) =

∫ 1

0
k0(x, t)g(u(x, t))dx, 0 ≤ t ≤ T

ux(1, t) =

∫ 1

0
k1(x, t)h(u(x, t))dx 0 ≤ t ≤ T

. (P1)

where f, φ, K0, K1, g and h are known functions and a is a positive constant,

and the function g and h verify the following inequality

‖g (x, t, u)‖L2(Q) 6 C0 ‖u‖L2(Q) , and ‖h (x, t, u)‖L2(Q) 6 C1 ‖u‖L2(Q) , (1)

C0 and C1 are positive constants. We shall assume that the function ϕ

satisfies a compatibility of boundary conditions, i.e.,

φx (0) =

∫ 1

0
K0 (x, 0) g(φ (x)) dx,

φx (1) =

∫ 1

0
K1 (x, 0) h(φ (x))dx.

2.2. A priori estimate (uniqueness of solution)

Lu = F . (2)

Where L = (L, ℓ), with domain of definition E consisting of functions u ∈

L2
(

0, T, L2 (Ω)
)

= L2 (Q) such that ux ∈ L2 (Q) and u satisfies the nonlocal

conditions ; the operator L is considered from E to F where E is the Banach

space consisting of all functions u(x, t) having a finite norm

‖u‖2E = ‖u‖2L2(Q) + ‖ux‖
2
L2(Q) ,

and F is the Hilbert space consisting of all elements F = (f, ϕ) for which
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the norm

‖F‖2F = ‖f‖2L2(Q) + ‖ϕ‖2L2(Ω) ,

is finite.

Theorem 1. For any function u ∈ E, we have the inequality

‖u‖E ≤ c ‖Lu‖F , (3)

where c is a positive constant independent of u.

Proof. Assume that a solution of the problem (P1) exists. We multiply the

equation of (P1) by u and integrating over Qτ , where Qτ = Ω × (0, τ), we

get

∫

Qτ

Lu · u dxdt =

∫

Qτ

f (x, t) · u dxdt. (4)

Integrating by parts each term of the left-hand side of (4) over Qτ , 0 < τ < T ,

we obtain

1

2

∫ 1

0
u (x, τ)2 dx+ a

∫ τ

0
u2x dt

= a

∫ τ

0
ux (1, t) u (1, t) dt− a

∫ τ

0
ux (0, t) u (0, t) dt+

1

2

∫ 1

0
ϕ2 dx

+

∫

Qτ

f · u dxdt, (5)

By integrating each term over (0, T ) and using the Cauchy Schwartz

inequality, finally we get :

‖u(x, τ)‖(0,T,L2(Ω)) + a ‖ux‖
2
L2(Qτ ) ≤ ‖f‖2L2(Qτ ) + ‖ϕ‖2L2(Ω)

+(ac21k
2
1 + ac20k

2
0 + a+ 1) ‖u‖2L2(Qτ ) .

By putting:

C ′ = ac21k
2
1 + ac20k

2
0 + a+ 1,

and

C =
1

min {1, a}
exp(C ′T )



✐

“BN17N13” — 2022/4/14 — 17:19 — page 87 — #5
✐

✐

✐

✐

✐

2022] SOLUTION FOR A PARABOLIC EQUATION 87

so, we get:

‖u‖2C(0,T,L2(Ω)) + ‖ux‖
2
L2(Qτ ) ≤ c2

(

‖f‖2L2(Qτ ) + ‖ϕ‖2L2(Ω)

)

. (6)

Finally, we obtain the desired inequality, where c =
√

exp(mT )

min{1,a} . ���

Corollary 1. The solution is unique, if for any function u ∈ D (L), we have

the following estimate :

‖u‖E ≤ c ‖F‖F (7)

Proof. Let u1 and u2 be two solutions to the problem (P1)

{

Lu1 = F

Lu2 = F
=⇒ Lu1 − Lu2 = 0,

and since L is linear we then get :

L (u1 − u2) = 0,

which gives :

u1 = u2. ���

Corollary 2. the solution of the problem (P1) if it exists, it depends con-

tinuousely on F ∈ F.

2.3. Existence of solution

This section is consecrated to the proof of the existence of the solution

of the problem (P1).







































∂u

∂t
− a

∂2u

∂x2
= f(x, t), x, t ∈ Q

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1

ux(0, t) =

∫ 1

0
k0(x, t)g(u(x, t))dx, 0 ≤ t ≤ T

ux(1, t) =

∫ 1

0
k1(x, t)h(u(x, t))dx 0 ≤ t ≤ T

. (P1)
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Let us consider the following auxiliary problem with homogeneous equation

Lw =
∂w

∂t
− a

∂2w

∂x2
= 0,

with initial data

ℓw = w(x, 0) = ϕ(x),

and the second kind nonlinear integral conditions

wx (0, t) =

∫ 1

0
K0 (x, t) g(w (x, t) + y (x, t))dx,

wx (1, t) =

∫ 1

0
K1 (x, t) h(w (x, t) + y (x, t))dx.

Where the functions g∗ and h∗ verify :

‖g∗ (w)‖L2(Q) 6 b1 ‖w‖L2(Q) + b2, and ‖h∗ (w)‖L2(Q) 6 b3 ‖w‖L2(Q) + b4,

b1, b2, b3 and b4 are positive constants.

Then the auxiliary problem with homogeneous equation becomes :











































Lw =
∂w

∂t
− a

∂2w

∂x2
= 0, x, t ∈ Q

ℓw = w(x, 0) = ϕ(x), x ∈ (0, 1)

wx (0, t) =

∫ 1

0
K0 (x, t) g

∗ (w (x, t)) dx, t ∈ (0, T )

wx (1, t) =

∫ 1

0
K1 (x, t) h

∗ (w (x, t)) dx. t ∈ (0, T )

. (P2)

If u is a solution of problem (P1) and w is a solution of problem (P2), then

y = u− w satisfies the following problem :



























Ly =
∂y

∂t
− a

∂2y

∂x2
= f (x, t) , x, t ∈ Q

ℓy = y(x, 0) = 0, x ∈ (0, 1)

yx (0, t) = 0, t ∈ (0, T )

yx (1, t) = 0, t ∈ (0, T )

. (P3)

To show the existence of solutions of the problem (P2), it is enough to
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transform the problem to the nonlinear ordinary differential equation.

For that we integrate the equation of (P2) over Ω then, we obtain

∫ 1

0
wtdx− a

∫ 1

0
wxxdx = 0, ∀x ∈ Ω;

so

∫ 1

0
[wt − a(K1 (x, t) h

∗ (w (x, t)) dx+K0 (x, t) g
∗ (w (x, t)))] dx = 0,

then, we obtain
∫ 1

0
(wt − F (t, w(x, t)))dx = 0, (8)

where

aK1 (x, t)h
∗ (w (x, t))− aK0(x, t)g

∗ (w (x, t)) = F (t, w(x, t)).

So, it is clear that there exists a function ψ verify that

wt − F (t, w(x, t)) = ψ (x, t) , where

∫ 1

0
ψ (x, t) dx = 0.

Thus, we have

wt = G(t, w(t)),

where

G(t, w(t)) = F (t, w(x, t)) + ψ (x, t) .

G is a Carathodory mapping, then by applying the theorem of exis-

tence and uniqueness we get that w ⊂W 1,1 and by applying the Nemytskii

mappings in Lebesgue spaces we get that wt in L
2[0, T ]

According to these results, we deduce that the problem (P2) admits a

unique solution.

Therefore it remains to solve and prove that the problem (P3) has a

unique strong solution. Let the following auxiliary problem with homoge-
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neous conditions



























Ly =
∂y

∂t
− a

∂2y

∂x2
= f (x, t) , x, t ∈ Q

ℓy = y(x, 0) = 0, x ∈ (0, 1)

yx (0, t) = 0, t ∈ (0, T )

yx (1, t) = 0, t ∈ (0, T )

. (P3)

Theorem 2. For any function y ∈ E, we have the inequality

‖y‖E ≤ c ‖Ly‖F , (9)

where c is a positive constant independent of y.

Proof. Assume that a solution of the problem (P3) exists. We multiply the

equation of (P3) by y and integrating over Qτ , where Qτ = Ω × (0, τ), we

get
∫

Qτ

yt · y − a

∫

Qτ

yxx · y =

∫

Qτ

f(x, y) · y, (10)

Integrating by parts each term of the left-hand side of (10) over Qτ , 0 < τ <

T , by using lemma 1 of Gronwall, we obtain

‖y‖2L∞(0,T ; L2(Ω)) + ‖yx‖
2
L2(Q) ≤ c2 ‖f‖2L2(Q) .

Finally, we obtain the desired inequality, where c =
√

exp(T )

min{1,2a} . ���

Corollary 3. If for any function u ∈ D (L), we have the following estimate:

‖u‖E ≤ C ‖F‖F ,

then the solution of the problem (P3) if it exists, it is unique.

Proof. Let u1 and u2 be two solutions of the problem (P3) :

{

Lu1 = F

Lu2 = F
=⇒ Lu1 − Lu2 = 0,

and since L is linear according to(9)

‖u1 − u2‖
2
E ≤ c ‖0‖2F = 0,
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which gives

u1 = u2.

���

2.3.1. Study of the existence of the solution of problem P3

Proposition 3. The operator L of E in F has a closure.

Proof. Let {yn} ∈ D(L) be a sequence, such as :

yn −→ 0 in E,

and

Lyn −→ (f ;ϕ) in F, (11)

it must be demonstrated that

f ≡ 0 and ϕ ≡ 0.

The convergence of yn towards 0 in E implies :

yn −→ 0 in D
′

(Q) . (12)

According to the continuity of the derivation ofD
′

(Q) inD
′

(Q), the relation

(12) involved :

Lyn −→ 0 in D
′

(Q) , (13)

Otherwise, the convergence of Lyn towards f in L2(Q) generates :

Lyn −→ f in D
′

(Q) . (14)

By virtue of the uniqueness of the limit in D
′

(Q), we calculate from (13)

and (14) that :

f = 0.

then, it is generated from (11) that :

ℓyn −→ ϕ in L2(Ω).
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on the other hand :

‖yn‖
2
E = ‖yn‖

2
C(0,T, L

2
(Ω))

+ ‖∂xyn‖
2
L2(Q)

‖yn‖
2
E ≥ ‖yn(x, 0)‖

2
L
2 (Ω)

.

by crossing the limit, we find :

lim
n→+∞

‖yn‖
2
E ≥ ‖ϕ(x)‖2

L
2 (Ω)

,

Since un −→ 0 in E then ‖yn‖
2
E −→ 0 in E, we find :

‖ϕ(x)‖2
L
2 (Ω)

≤ 0,

from where ϕ = 0. ���

Definition 4. The solution of the equation

Lu = F ,

is said to be a strong generalized solution of the problem (P3).

• The theorem (1) is valid for a strong generalized solution, i.e., we have

the inequality :

‖u‖E ≤ K
∥

∥Lu
∥

∥

F
∀u ∈ D(L). (15)

consequently this last inequality entails the following corollaries :

Corollary 4. The solution of the problem (P3) if it exists, it is unique and

depends continuously on F ∈ F

Corollary 5. The set of values R(L) of the operator L is equal to R(L).

Proof. We can proof this corollary easy ���

Theorem 5. The solution of (P3) is exist.

We must prove that R(L) is dense in F for everything y ∈ E and for all

F = (f, ϕ) ∈ F.

Let L the closure of L, and D(L) the definition domain of L
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In order to prove the existence of the solution enough to proof Ly is

surjective.

According to the density of L we have R(L) = F . Then, we obtain

R(L)⊥ = {0}F .

We have

R(L)⊥ = {w ∈ F, 〈w,F〉F = 0,∀F ∈ R(L)}

=
{

(w,w0) ∈ L2(Q), 〈w, f〉L2(Q) + 〈w0, ϕ〉L2(Q) = 0,∀f ∈ L2(Q),

∀ϕ ∈ L2(Q)
}

and

D0(L) = {y ∈ E, y(x, 0) = 0} .

Then, we get

w0 = 0.

It remains to demonstrate that w = 0.

We have

〈w,Ly〉L2(Q) =

∫ 1

0

∫ T

0
wLy = 0.

We pose w = y, we obtain

∫ 1

0

∫ T

0
y(yt − a∆y) =

∫ 1

0

∫ T

0
y · yt − a

∫ 1

0

∫ T

0
y · yxx = 0.

Then
∫ 1

0

∫ T

0
y · yt = a

∫ 1

0

∫ T

0
y · yxx.

By integrating par parts, we get

1

2

∫ 1

0
y2(x, T ) = −a

∫ T

0
y2x ≤ 0.

Finaly, we get

y = 0 =⇒ w = 0.
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3. The Numerical Study of the Main Problem

For the numerical solution of the considered problem (P1) we apply the

compact finite difference technique. First, we simplify the presentation of

the interval [0, 1] in M by taking ∆x = 1
M

and the interval [0, T ] in N by

taking ∆t = 1
N
. By uni we denote the approximation to u at the ith grid-

point and nth time step, the grid point (xi, tn) are given by : xi = i∆x,

i = 0, 1, . . . ,M . tn = n∆t, n = 0, . . . , N . uni = u( i∆x, n∆t). The notations

uni , f
n
i , g(u

n
i ) , h(u

n
i ),

(

∂g(u)
∂u

)n

i
and

(

∂h(u)
∂u

)n

i
are used for approximations of

u(xi, tn), f(xi, tn), g(u(xi, tn)), h(u(xi, tn)),
∂g(u(xi,tn))

∂u
and ∂h(u(xi,tn))

∂u
respec-

tively. By using the finite difference scheme and by multiplying the operator
(

1 + (∆x)2

12 δ2x

)

, we obtain :

δtu
n
i + (∆x)2

12 δ2x(δtu
n
i )− aδ2xu

n
i = fni + (∆x)2

12 δ2xf
n
i

We put r = a ∆t

(∆x)2
the scheme is written as follows :

( 1

12
− r

)

uni+1 +
(5

6
+ 2r

)

uni +
( 1

12
− r

)

uni−1

=
1

12
un−1
i+1 +

5

6
un−1
i +

1

12
un−1
i−1 +

∆t

12
(fni+1 + 10fni + fni−1) (16)

We still have to determine two unknowns un0 et unM , for this we approximate

the integrals conditions numerically by the composite Simpson rule (We have

chosen this approximation because it is of the same order of precision which

requires the number of sub-intervals to be even M = 2i):

ux(0, tn) =

∫ 1

0
k0(x, tn)g(u(x, tn))dx

=
∆x

3





k0(x0, tn)g(u
n
0 ) + 4

∑

M

2

i=1 k0(x2i−1, tn)g(u
n
2i−1)

+2
∑

M

2
−1

i=1 k0(x2i, tn)g(u
n
2i) + k0(xM , tn)g(u

n
M )





Then :

3ux(0, tn)−∆xk0(x0, tn)g(u
n
0 )−∆xk0(xM , tn)g(u

n
M )
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= ∆x

(

4

M

2
∑

i=1

k0(x2i−1, tn)g(u
n
2i−1) + 2

M

2
−1

∑

i=1

k0(x2i, tn)g(u
n
2i)

)

(17)

And :

ux(1, tn) =

∫ 1

0
k1(x, tn)h(u(x, tn))dx

=
∆x

3















k1(x0, tn)h(u
n
0 ) + 4

M

2
∑

i=1

k1(x2i−1, tn)h(u
n
2i−1)

+2

M

2
−1

∑

i=1

k1(x2i, tn)h(u
n
2i) + k1(xM , tn)h(u

n
M )















then :

3ux(1, tn)−∆xk1(x0, tn)h(u
n
0 )−∆xk1(xM , tn)h(u

n
M )

= ∆x



4

M

2
∑

i=1

k1(x2i−1, tn)h(u
n
2i−1) + 2

M

2
−1

∑

i=1

k1(x2i, tn)h(u
n
2i)



 (18)

By using the linearization technique will be developed to overcome this

difficulty. Using Taylors series expansion of the nonlinear terms g(uni ) =

g(u(xi, tn)) and h(u
n
i ) = h(u(xi, tn)), we obtain :

g(uni ) = g(un−1
i ) +

(

∂g(u)

∂u

)n−1

i

(uni − un−1
i ) + . . . (19)

h(uni ) = h(un−1
i ) +

(

∂h(u)

∂u

)n−1

i

(uni − un−1
i ) + . . . (20)

Then, we get :

an0u
n
0 +a

n
1u

n
1 +a

n
2u

n
2 +a

n
3u

n
3 +a

n
4u

n
4 + · · ·+anM−1u

n
M−1+a

n
Mu

n
M = Ln

M , (21)
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where


























































































an0 = −25− 4(∆x)2k0(x0, tn)
(

∂g(u)
∂u

)n−1

0
,

an1 = 48− 16(∆x)2k0(x1, tn)
(

∂g(u)
∂u

)n−1

1
,

an2 = −36− 8(∆x)2k0(x2, tn)
(

∂g(u)
∂u

)n−1

2
,

an3 = 16− 16(∆x)2k0(x3, tn)
(

∂g(u)
∂u

)n−1

3
,

an4 = −3− 8(∆x)2k0(x4, tn)
(

∂g(u)
∂u

)n−1

4
,

an2i−1 = −16(∆x)2k0(x2i−1, tn)
(

∂g(u)
∂u

)n−1

2i−1
un2i−1 ; i = 3, . . . , M2 ,

an2i = −8(∆x)2k0(x2i, tn)
(

∂g(u)
∂u

)n−1

2i
un2i ; i = 3, . . . , M2 − 1,

(22)

and

Ln
M = 16(∆x)2

M
∑

i=1

k1(x2i−1, tn)
[

h(un−1
2i−1)−

(∂h(u)

∂u

)n−1

2i−1
un−1
2i−1

]

+8(∆x)2
M−1
∑

i=1

k1(x2i, tn)
[

h(un−1
2i )−

(∂h(u)

∂u

)n−1

2i
un−1
2i

]

+4(∆x)2
[

k1(x0, tn)
[

h(un−1
0 )−

(∂h(u)

∂u

)n−1

0
un−1
0

]

]

+4(∆x)2
[

k1(x2M , tn)
[

h(un−1
2M )−

(∂h(u)

∂u

)n−1

2M
un−1
2M

]

]

, (23)

then, we have :

bn0u
n
0 + · · ·+ bn2M−4u

n
2M−4 + bn2M−3u

n
2M−3 + bn2M−2u

n
2M−2

+bn2M−1u
n
2M−1 + bn2Mu

n
2M = γnM , (24)
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where


































































































bn0 = −4(∆x)2k1(x0, tn)
(

∂h(u)
∂u

)n−1

0
,

bn2M−4 = 3− 8(∆x)2k1(x2M−4, tn)
(

∂h(u)
∂u

)n−1

2M−4
,

bn2M−3 = −16− 16(∆x)2k1(x2M−3, tn)
(

∂h(u)
∂u

)n−1

2M−3
,

bn2M−2 = 36− 8(∆x)2k1(x2M−2, tn)
(

∂g(u)
∂u

)n−1

2M−2
,

bn2M−1 = −48− 16(∆x)2k1(x2M−1, tn)
(

∂h(u)
∂u

)n−1

2M−1
,

bn2M = 25− 4(∆x)2k1(x2M , tn)
(

∂g(u)
∂u

)n−1

2M
,

bn2i−1 = −16(∆x)2k1(x2i−1, tn)
(

∂h(u)
∂u

)n−1

2i−1
, i = 1, . . . ,M − 2,

bn2i = −8(∆x)2k1(x2i, tn)
(

∂h(u)
∂u

)n−1

2i
, i = 1, . . . ,M − 2,

(25)

and

γnM = 16(∆x)2
M
∑

i=1

k1(x2i−1, tn)
[

h(un−1
2i−1)−

(∂h(u)

∂u

)n−1

2i−1
un−1
2i−1

]

+8(∆x)2
M−1
∑

i=1

k1(x2i, tn)
[

h(un−1
2i )−

(∂h(u)

∂u

)n−1

2i
un−1
2i

]

+4(∆x)2
[

k1(x0, tn)
[

h(un−1
0 )−

(∂h(u)

∂u

)n−1

0
un−1
0

]

]

+4(∆x)2
[

k1(x2M , tn)
[

h(un−1
2M )−

(∂h(u)

∂u

)n−1

2M
un−1
2M

]

]

. (26)

Combining (21),(23), with (16) yields an (M + 1) × (M + 1) linear system

of equations. We write the system in the matrix from

AnUn+1 = Bn,

which

An=



















an0 an1 an2 an3 an4 · · · anM−4 anM−3 anM−2 anM−1 anM
1
12−r

5
6+2r 1

12−r 0 · · · · · · · · · · · · · · 0
. . .

. . .
. . .

. . .
...

0
. . . 0 1

12−r
5
6+2r 1

12−r

bn0 bn1 bn2 bn3 bn4 · · · bn2M−4 bn2M−3 bn2M−2 bn2M−1 bn2M



















,
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Un+1 =

















un0
un1
...

unM−1

unM

















,

Bn =

















Ln
M

Ln
1
...

Ln
2M−1

γnM

















,

where an0 , . . . , a
n
M , bn0 , . . . , b

n
M , Ln

M and γnM are the coefficients in (22), (25),

and (26) respectively.

4. Numerical Experiments

To test the above algorithm described in Section 3.3 , we use two exam-

ples with known analytical solutions as follows:

Example 1. The first test example to be solved is

∂u

∂t
−
∂2u

∂x2
=

(

1 + π2
)

exp (t) cos (πx) , 0 < x < 1, 0 < t ≤ T, (27)

with the initial condition

u (x, 0) = cos (πx) , 0 < x < 1, (28)

and the nonlinear nonlocal boundary conditions

ux (0, t) =

∫ 1

0
sin (πx)u3 (x, t) dx, 0 < t ≤ T, (29)

ux (1, t) =

∫ 1

0
sin (πx)u5 (x, t) dx, 0 < t ≤ T. (30)

The analytic solution is

u (x, t) = cos (πx) exp (t) . (31)
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In Table 1 we present results with h = 0.05, 0.005 and k = 0.4 using the

finite difference formulate for x = 0.1 and t = 0.01, 0.02, 0.03, . . . , 0.1. Table

2 gives the maximum errors of the numerical solutions experimental order

of convergence. The maximum error is defined as follows

Er = ‖u− uhk‖∞ = max0≤k≤N{max0≤i≤M |u(xi, tk)− uki |},

and the experiment order convergence for the scheme is calculated using the

formula :

order =
ln(Er(hi−1)/Er(hi))

ln(hi−1/hi)
.

Table 1: Some numerical results at x=0.1 for h=0.05 and h=0.005 for Example 1.

ti exact CBES h = 0.05 CBES h = 0.005

0.01 0.96061479 0.96061503 0.96061479

0.02 0.97026913 0.97026948 0.97026913

0.03 0.98002050 0.98002092 0.98002050

...
...

...
...

0.1 1.05108000 1.05108060 1.05108000

Table 2: The maximum errors and experiment order of convergence for Example 1.

M N maximum errors order

4 40 3.88× 10−4

8 640 2.50 · 10−5 3.953

16 10240 1.57 · 10−6 3.995

32 163840 9.83 · 10−8 3.997

From the table it is clear that the results are in good agreement as

compared with the exact ones. Moreover, the new scheme is fourth order

accurate in space . Figure 1 illustrates the exact solution and an approximate

solution of Example 1 by CBES.
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Figure 1: (a) Exact and (b) Approximate Solution by CBES for Example 1.

Example 2. The second test example to be solved is

∂u

∂t
−
∂2u

∂x2
=2t− 2π(3x2 − 3x) cos(2π(x3 −

3

2
x2))

+ 4π(3x2 − 3x)2 sin(2π(x3 −
3

2
x2)), 0 < x < 1, 0 < t ≤ T, (32)

with the initial condition

u (x, 0) = sin

(

2π(x3 −
3

2
x2)

)

, 0 < x < 1, (33)

and the nonlocal boundary conditions

ux (0, t)=

∫ 1

0
2π(3x2−3x) cos(2π(x3−

3

2
x2))eu(x,t)dx, 0<t≤T, (34)

ux (1, t)=

∫ 1

0
2π(3x2−3x) cos(2π(x3−

3

2
x2))

1

1+u (x, t)
dx, 0<t≤T, (35)

The analytic solution is

u (x, t) = sin

(

2π(x3 −
3

2
x2)

)

+ t2. (36)

In Table 3 we present results with for h = 0.05 and h = 0.005 and r =

0.4 using the finite difference formulate discussed in Section 2 for x = 0.1

and t = 0.01; 0.02; 0.03; . . . ; 0.1. Table 4 gives the maximum errors of the

numerical solutions.
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Table 3: Some numerical results at x = 0.1 for h = 0.05 and h = 0.005.

ti exact CBES h = 0.05 CBES h = 0.005

0.01 0.30911699 0.30912416 0.30911707

0.02 0.30941699 0.3094286 0.30941711

0.03 0.30991699 0.30993220 0.30991715

...
...

...
...

0.1 0.31901699 0.31904755 0.31901730

Table 4: The maximum errors and experiment order of convergence for example 2
.

M N maximum errors order

4 40 4.749373× 10−3

8 640 2.949950 · 10−4 4.008

16 10240 1.840864 · 10−5 4.002

32 163840 1.150093 · 10−6 4.0005

Figure 2 illustrate the exact solution and an approximate solution of

Example 2 by CBES.

Figure 2: (a) Exact and (b) Approximate Solution by CBES for Example 2.

From the table it is clear that the results are in good agreement as

compared with the exact ones.
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5, Conclusion

The study of heat diffusion phenomena has attracted the attention of

many scientists for many years because of their great importance in our

daily lives, but what aroused our interest in studying this equation in a

more complex field defined by nonlinear integral conditions of second type,

as we were able to simulate the solution as we look forward to studying more

problems complicated.
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