A SIMPLE SOLUTION FORMULA FOR THE STOKES EQUATIONS IN THE HALF SPACE

DAISUKE HIRATA

Institute for Mathematics and Computer Science, Tsuda University, Tsuda-chou, Kodaira-shi, Tokyo, 187-8577, Japan.
E-mail: hiradice@gmail.com
$\|\|\|$

Abstract

This note studies the Stokes equations in the half space \mathbb{R}_{+}^{d} with the non-slip boundary condition. We present an explicit solution formula by using the hybrid Fourier-Fourier sine transform, which is simpler than already known ones.

1. Introduction

In this note we are concerned with the initial-boundary value problem of the Stokes equations in the half space $\mathbb{R}_{+}^{d}:=\mathbb{R}_{+} \times \mathbb{R}^{d-1}=\left\{\left(z_{1}, \ldots, z_{d}\right) \in\right.$ $\left.\mathbb{R}^{d}: z_{1}>0\right\}$ for $d \geq 3$ with the non-slip boundary condition:

$$
\begin{align*}
u_{t}-\Delta u+\nabla p & =0 \quad \text { in } \mathbb{R}_{+}^{d} \times(0, \infty), \tag{1.1}\\
\nabla \cdot u & =0 \quad \text { in } \mathbb{R}_{+}^{d} \times(0, \infty), \tag{1.2}\\
\left.u\right|_{x_{1}=0} & =0, \tag{1.3}\\
\left.u\right|_{t=0} & =a, \tag{1.4}\\
&
\end{align*}
$$

where $u=\left(u_{i}(x, t)\right)_{1 \leq i \leq d}$ is an unknown velocity field with an associated pressure $p=p(x, t)$ and $a=\left(a_{i}(x)\right)_{1 \leq i \leq d}$ is a prescribed velocity field satisfying $\nabla \cdot a=0$ in \mathbb{R}_{+}^{d}.

Our main purpose of this note is to construct a solution operator $\{S[\cdot](t)\}_{t \geq 0}$ such that $u(t)=S[a](t)$ is a smooth solution to the Stokes IBVP
(1.1)-(1.4) for $t>0$. Such explicit solution formulae play a fundamental role in establishing various estimates of solutions and the gradient (cf. [1, 4, [5]).

Our solution formula presented in Theorem 3.1 is obtained by using the hybrid Fourier-Fourier sine transform, which is simpler than already known ones. Indeed, the first component u_{1} is determined only by the initial data a_{1} similarly as in the whole space case \mathbb{R}^{d}. As is well-known, each component u_{i} of a solution u to the corresponding Cauchy problem on \mathbb{R}^{d} is determined only by the initial data a_{i} :

$$
u_{i}=\sum_{j=1}^{d} e^{-t \Delta}\left(\delta_{i j}+R_{i} R_{j}\right) a_{j}=e^{-t \Delta} a_{i}
$$

for $a=\left(a_{i}(x)\right)_{1 \leq i \leq d}$ satisfying $\nabla \cdot a=0$, where $e^{-t \Delta}$ is the heat semigroup in \mathbb{R}^{d} and R_{i} is the Riesz operator in \mathbb{R}^{d} with the symbol $\sqrt{-1} \xi_{i} /|\xi|$. In addition, our formula is not necessary for the compatibility boundary condition $\left.a_{1}\right|_{x_{1}}=0$.

2. Preliminaries

We use the standard notation for differentiation: $\partial_{t}=\partial / \partial t$ and $\partial_{i}:=$ $\partial / \partial x_{i}$ for $i=1, \ldots, d$.

Let $\mathcal{F}[\cdot]$ denote the Fourier transform in \mathbb{R}^{d} :

$$
\mathcal{F}[f](\xi):=\int_{\mathbb{R}^{d}} e^{-\sqrt{-1} x \cdot \xi} f(x) d x
$$

and let $\mathcal{F}^{-1}[\cdot]$ denote the associated inverse transform in \mathbb{R}^{d} :

$$
\mathcal{F}^{-1}[\hat{f}](x):=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{\sqrt{-1} x \cdot \xi} \hat{f}(\xi) d \xi
$$

Let $\mathcal{F}^{\prime}[f]$ denote the x_{1}-tangential Fourier transform of $f=f(x)$ in \mathbb{R}_{+}^{d} :

$$
\mathcal{F}^{\prime}[f]\left(x_{1}, \xi^{\prime}\right):=\int_{\mathbb{R}^{d-1}} e^{-\sqrt{-1} x^{\prime} \cdot \xi^{\prime}} f\left(x_{1}, x^{\prime}\right) d x^{\prime}
$$

and let $\mathcal{F}^{\prime-1}[\hat{f}]$ denote the associated inverse transform of $\hat{f}=\hat{f}\left(x_{1}, \xi^{\prime}\right)$:

$$
\mathcal{F}^{\prime-1}[\hat{f}](x):=\frac{1}{(2 \pi)^{d-1}} \int_{\mathbb{R}^{d-1}} e^{\sqrt{-1} x^{\prime} \cdot \xi^{\prime}} \hat{f}\left(x_{1}, \xi^{\prime}\right) d \xi^{\prime}
$$

where

$$
x^{\prime}=\left(x_{2}, \ldots, x_{d}\right), \quad \xi^{\prime}=\left(\xi_{2}, \ldots, \xi_{d}\right), \quad x^{\prime} \cdot \xi^{\prime}=\sum_{k=2}^{d} x_{k} \xi_{k} .
$$

We define the x_{1}-directional Fourier sine (resp. cosine) transform of a function $f=f(x)$ in \mathbb{R}_{+}^{d} by $\mathcal{S}_{1}[f]$ (resp. $\mathcal{C}_{1}[f]$) as follows: for any $\xi_{1} \in \mathbb{R}$,

$$
\begin{aligned}
\mathcal{S}_{1}[f]\left(\xi_{1}, x^{\prime}\right) & :=2 \int_{0}^{\infty} \sin \left(x_{1} \xi_{1}\right) f\left(x_{1}, x^{\prime}\right) d x_{1} \\
\left(\text { resp. } \mathcal{C}_{1}[f]\left(\xi_{1}, x^{\prime}\right)\right. & \left.:=2 \int_{0}^{\infty} \cos \left(x_{1} \xi_{1}\right) f\left(x_{1}, x^{\prime}\right) d x_{1}\right)
\end{aligned}
$$

with the associated inverse transform of $\hat{f}=\hat{f}\left(\xi_{1}, x^{\prime}\right)$ in \mathbb{R}_{+}^{d} :

$$
\mathcal{S}_{1}^{-1}[\hat{f}](x):=\frac{1}{\pi} \int_{0}^{\infty} \sin \left(x_{1} \xi_{1}\right) \hat{f}\left(\xi_{1}, x^{\prime}\right) d \xi_{1} .
$$

Let $\mathcal{O}_{1}[\cdot]$ denote the odd extension operator in x_{1} :

$$
\mathcal{O}_{1}[f](x):= \begin{cases}f\left(x_{1}, x^{\prime}\right) & \text { for } x_{1}>0 \\ -f\left(-x_{1}, x^{\prime}\right) & \text { for } x_{1}<0\end{cases}
$$

Note that $\mathcal{O}_{1}\left[\mathcal{S}_{1}[f]\right]=\mathcal{S}_{1}[f], \mathcal{O}_{1}\left[\mathcal{S}_{1}^{-1}[\hat{f}]\right]=\mathcal{S}_{1}^{-1}[\hat{f}]$ and $\mathcal{F}\left[\mathcal{O}_{1}[f]\right]=\frac{1}{\sqrt{-1}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}[f]\right]$. We have the inversion formula:

$$
f=\left.\frac{1}{\sqrt{-1}} \mathcal{F}^{-1}\left[\mathcal{S}_{1}\left[\mathcal{F}^{\prime}[f]\right]\right]\right|_{\mathbb{R}_{+}^{d}}=\left.\mathcal{F}^{\prime-1}\left[\mathcal{S}_{1}^{-1}\left[\mathcal{S}_{1}\left[\mathcal{F}^{\prime}[f]\right]\right]\right]\right|_{\mathbb{R}_{+}^{d}} .
$$

In addition, we have the formal identities:

$$
\xi_{1} \mathcal{C}_{1}\left[\mathcal{F}^{\prime}[f]\right]=-\mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1} f\right]\right], \quad \xi_{1}^{2} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}[f]\right]=-\mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1}^{2} f\right]\right],
$$

provided that $f=f(x)$ satisfies $\left.f\right|_{x_{1}=0}=0$ and $f\left(x_{1}, x^{\prime}\right) \rightarrow 0$ as $x_{1} \rightarrow+\infty$.
We define the following two operators:

$$
\begin{aligned}
(-\Delta)^{-1} f & :=\left.\frac{1}{\sqrt{-1}} \mathcal{F}^{-1}\left[-\frac{1}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}[f]\right]\right]\right|_{\mathbb{R}_{+}^{d}} \\
& =\frac{\Gamma\left(\frac{d}{2}+1\right)}{d(d-2) \pi^{\frac{d}{2}}} \int_{\mathbb{R}_{+}^{d}}\left(\frac{1}{|x-y|^{d-2}}-\frac{1}{\left|\left(x_{1}+y_{1}, x^{\prime}-y^{\prime}\right)\right|^{d-2}}\right) f(y) d y
\end{aligned}
$$

and

$$
\begin{aligned}
\left(-\Delta^{\prime}\right)^{-\frac{1}{2}} f & :=\left.\frac{1}{\sqrt{-1}} \mathcal{F}^{-1}\left[\frac{1}{\left|\xi^{\prime}\right|} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}[f]\right]\right]\right|_{\mathbb{R}_{+}^{d}}=\mathcal{F}^{\prime-1}\left[\frac{1}{\left|\xi^{\prime}\right|} \mathcal{F}^{\prime}[f]\right] \\
& =\frac{1}{2 \pi^{\frac{d-1}{2}}} \frac{\Gamma\left(\frac{d-2}{2}\right)}{\Gamma\left(\frac{d-1}{2}\right)} \int_{\mathbb{R}^{d-1}} \frac{f\left(x_{1}, y^{\prime}\right)}{\left|x^{\prime}-y^{\prime}\right|^{d-2}} d y^{\prime}
\end{aligned}
$$

with $\left|\xi^{\prime}\right|:=\sqrt{\sum_{k=2}^{d} \xi_{k}^{2}}$. The above formulae follow from the kernels of the Newtonian and Riesz potentials respectively (cf. [3] and [2, Theorem 2.4.6] for instance).

For a given function $f: \mathbb{R}_{+}^{d} \rightarrow \mathbb{R}$, let $\hat{v}=\hat{v}\left(x_{1}, \xi^{\prime}, t\right)$ be a solution of the IBVP of the 1 -D heat equation in \mathbb{R}_{+}with a parameter $\xi^{\prime} \in \mathbb{R}^{d-1}$:

$$
\begin{equation*}
\partial_{t} \hat{v}-\partial_{1}^{2} \hat{v}+\left|\xi^{\prime}\right|^{2} \hat{v}=0,\left.\quad \hat{v}\right|_{x_{1}=0}=0,\left.\quad \hat{v}\right|_{t=0}=\mathcal{F}^{\prime}[f] \tag{2.1}
\end{equation*}
$$

Then we can observe that $\hat{w}(\xi, t):=\mathcal{S}_{1}[\hat{v}]$ is governed by the linear ODE:

$$
\begin{equation*}
\frac{d}{d t} \hat{w}+|\xi|^{2} \hat{w}=0,\left.\quad \hat{w}\right|_{\xi_{1}=0}=0,\left.\quad \hat{w}\right|_{t=0}=\mathcal{S}_{1}\left[\mathcal{F}^{\prime}[f]\right] \tag{2.2}
\end{equation*}
$$

and that $v(x, t):=\mathcal{F}^{\prime-1}[\hat{v}]=\frac{1}{\sqrt{-1}} \mathcal{F}^{-1}[\hat{w}]$ is governed by the heat equation in \mathbb{R}_{+}^{d} :

$$
\begin{equation*}
\partial_{t} v=\Delta v,\left.\quad v\right|_{x_{1}=0}=0,\left.\quad v\right|_{t=0}=f \tag{2.3}
\end{equation*}
$$

Note that the above problems (2.1)-(2.3) are equivalent via the inversion formulae with the restriction on \mathbb{R}_{+}^{d}. By the reflection principle, we obtain the solution formulae for \hat{v} and v respectively:

$$
\begin{equation*}
\hat{v}(t)=e^{-\left|\xi^{\prime}\right|^{2} t} \int_{0}^{\infty}\left(G\left(x_{1}-y_{1}, t\right)-G\left(x_{1}+y_{1}, t\right)\right) \mathcal{F}^{\prime}[f]\left(y_{1}, \xi^{\prime}\right) d y_{1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{align*}
v(t)= & \int_{\mathbb{R}_{+}^{d}}\left(G\left(x_{1}-y_{1}, t\right)-G\left(x_{1}+y_{1}, t\right)\right) \prod_{k=2}^{d} G\left(x_{k}-y_{k}, t\right) f(y) d y \\
& =: H(t) f \tag{2.5}
\end{align*}
$$

where the 1-D heat kernel $G(s, t)=\frac{1}{\sqrt{4 \pi t}} \exp \left(-\frac{s^{2}}{4 t}\right)$. In addition, if a function
$\hat{w}=\mathcal{F}^{\prime}[w]\left(x_{1}, \xi^{\prime}, t\right)$ satisfies the integral form:

$$
\begin{equation*}
\hat{w}(t)=e^{-\left|\xi^{\prime}\right|^{2} t} \int_{0}^{\infty}\left(G\left(x_{1}-y_{1}, t\right)+G\left(x_{1}+y_{1}, t\right)\right) \mathcal{F}^{\prime}[f]\left(y_{1}, \xi^{\prime}\right) d y_{1} \tag{2.6}
\end{equation*}
$$

then we get the solution formula:

$$
\begin{align*}
w(t) & =\int_{\mathbb{R}_{+}^{d}}\left(G\left(x_{1}-y_{1}, t\right)+G\left(x_{1}+y_{1}, t\right)\right) \prod_{k=2}^{d} G\left(x_{k}-y_{k}, t\right) f(y) d y \\
& =: K(t) f \tag{2.7}
\end{align*}
$$

which is a solution of the IBVP of the heat equation subject to the zeroNeumann boundary condition: $\left.\partial_{1} w\right|_{x_{1}=0}=0$. Therefore we deduce the alternative formulae for (2.4) and (2.6) respectively:

$$
\begin{equation*}
\hat{v}(t)=\mathcal{F}^{\prime}[H(t) f], \quad \hat{w}(t)=\mathcal{F}^{\prime}[K(t) f] \tag{2.8}
\end{equation*}
$$

3. A Solution Formula

In this section, we shall derive the following solution formula.
Theorem 3.1. Let $S[a](t)=\left(S_{1}\left[a_{1}\right](t), S_{2}\left[a_{2} ; a_{1}\right](t), \ldots, S_{d}\left[a_{d} ; a_{1}\right](t)\right)$ be the operator defined by

$$
\begin{gather*}
S_{1}\left[a_{1}\right](t):=\left(-\Delta^{\prime}\right)^{-\frac{1}{2}}\left(1-\partial_{1}\right)\left(1-\partial_{1}^{2}(-\Delta)^{-1}\right) H(t) a_{1} \\
 \tag{3.1}\\
-\partial_{1}\left(1-\partial_{1}\right)(-\Delta)^{-1} K(t) a_{1}
\end{gather*}
$$

and for $i=2, \ldots, d$,

$$
\begin{align*}
S_{i}\left[a_{i} ; a_{1}\right](t):= & H(t) a_{i}+\partial_{i}\left\{\left(-\Delta^{\prime}\right)^{-\frac{1}{2}}+\left(1-\partial_{1}\right)(-\Delta)^{-1}\right\} H(t) a_{1} \\
& +\partial_{i}\left(-\Delta^{\prime}\right)^{-\frac{1}{2}} \partial_{1}\left(1-\partial_{1}\right)(-\Delta)^{-1} K(t) a_{1} \tag{3.2}
\end{align*}
$$

Then $u(t):=S[a](t)$ is a solution to the problem (1.1) -(1.4).

Proof. Suppose that $\{u, p\}$ is a sufficiently regular solution to (1.1)-(1.4) on $\overline{\mathbb{R}_{+}^{d}} \times[0, \infty)$. Let us set

$$
\begin{equation*}
\hat{u}_{i}:=\mathcal{F}^{\prime}\left[u_{i}\right]\left(x_{1}, \xi^{\prime}, t\right), \quad \hat{p}:=\mathcal{F}^{\prime}[p]\left(x_{1}, \xi^{\prime}, t\right), \quad \hat{a}_{i}:=\mathcal{F}^{\prime}\left[a_{i}\right]\left(x_{1}, \xi^{\prime}\right) \tag{3.3}
\end{equation*}
$$

for $i=1, \ldots, d$. Applying $\nabla \cdot$ to the first equation (1.1), we have that $\Delta p=0$, which yields the following ODE:

$$
\left(\partial_{1}^{2}-\left|\xi^{\prime}\right|^{2}\right) \hat{p}=0
$$

We deduce that

$$
\hat{p}=\hat{p}\left(x_{1}, \xi^{\prime}, t\right)=e^{-x_{1}\left|\xi^{\prime}\right|} \hat{p}\left(0, \xi^{\prime}, t\right)
$$

Note that $\hat{p} \rightarrow 0$ as $\left|\xi^{\prime}\right| \rightarrow \infty$ or $x_{1} \rightarrow \infty$ and

$$
\begin{equation*}
\left(\partial_{1}+\left|\xi^{\prime}\right|\right) \hat{p}=0 \tag{3.4}
\end{equation*}
$$

From the first equation (1.1) for $i=1$, we get

$$
\begin{equation*}
\partial_{t} \hat{u}_{1}-\partial_{1}^{2} \hat{u}_{1}+\left|\xi^{\prime}\right|^{2} \hat{u}_{1}+\partial_{1} \hat{p}=0 \tag{3.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\hat{v}:=\left|\xi^{\prime}\right| \hat{u}_{1}+\partial_{1} \hat{u}_{1} \tag{3.6}
\end{equation*}
$$

From (3.4)-(3.5), we obtain the 1-D heat equation in \mathbb{R}^{+}:

$$
\begin{equation*}
\partial_{t} \hat{v}-\partial_{1}^{2} \hat{v}+\left|\xi^{\prime}\right|^{2} \hat{v}=0 \tag{3.7}
\end{equation*}
$$

On the other hand, we can rewrite by using the second equation (1.2),

$$
\begin{aligned}
\hat{v} & =\left|\xi^{\prime}\right| \hat{u}_{1}+\mathcal{F}^{\prime}\left[\partial_{1} u_{1}\right]=\left|\xi^{\prime}\right| \hat{u}_{1}+\mathcal{F}^{\prime}\left[-\sum_{j=2}^{d} \partial_{j} u_{j}\right] \\
& =\left|\xi^{\prime}\right| \hat{u}_{1}-\sqrt{-1} \sum_{j=2}^{d} \xi_{j} \int_{\mathbb{R}^{d-1}} e^{-\sqrt{-1} x^{\prime} \cdot \xi^{\prime}} u_{j}\left(x_{1}, x^{\prime}, t\right) d x^{\prime}
\end{aligned}
$$

which implies the boundary condition

$$
\begin{equation*}
\left.\hat{v}\right|_{x_{1}=0}=0 . \tag{3.8}
\end{equation*}
$$

We also have the initial condition

$$
\begin{equation*}
\left.\hat{v}\right|_{t=0}=\left|\xi^{\prime}\right| \hat{a}_{1}+\partial_{1} \hat{a}_{1} . \tag{3.9}
\end{equation*}
$$

In view of (2.1)-(2.8), we observe that the solution \hat{v} to the IBVP (3.7)-(3.9) satisfies

$$
\begin{aligned}
\hat{v} & =\left|\xi^{\prime}\right| \mathcal{F}^{\prime}\left[H(t) a_{1}\right]+e^{-\left|\xi^{\prime}\right|^{2} t} \int_{0}^{\infty}\left(G\left(x_{1}-y_{1}, t\right)-G\left(x_{1}+y_{1}, t\right)\right) \frac{\partial}{\partial y_{1}} \hat{a}_{1}\left(y_{1}, \xi^{\prime}\right) d y_{1} \\
& =\left|\xi^{\prime}\right| \mathcal{F}^{\prime}\left[H(t) a_{1}\right]-e^{-\left|\xi^{\prime}\right|^{2} t} \int_{0}^{\infty} \frac{\partial}{\partial y_{1}}\left(G\left(x_{1}-y_{1}, t\right)-G\left(x_{1}+y_{1}, t\right)\right) \hat{a}_{1}\left(y_{1}, \xi^{\prime}\right) d y_{1} \\
& =\left|\xi^{\prime}\right| \mathcal{F}^{\prime}\left[H(t) a_{1}\right]+e^{-\left|\xi^{\prime}\right|^{2} t} \int_{0}^{\infty} \frac{\partial}{\partial x_{1}}\left(G\left(x_{1}-y_{1}, t\right)+G\left(x_{1}+y_{1}, t\right)\right) \hat{a}_{1}\left(y_{1}, \xi^{\prime}\right) d y_{1} \\
& =\left|\xi^{\prime}\right| \mathcal{F}^{\prime}\left[H(t) a_{1}\right]+\mathcal{F}^{\prime}\left[\partial_{1} K(t) a_{1}\right]
\end{aligned}
$$

Here we solve the ODE (3.6) with $\left.\hat{u}_{1}\right|_{x_{1}=0}=0$ to get

$$
\begin{equation*}
\hat{u}_{1}\left(x_{1}, \xi^{\prime}, t\right)=\int_{0}^{x_{1}} e^{\left(s-x_{1}\right)\left|\xi^{\prime}\right|} \hat{v}\left(s, \xi^{\prime}, t\right) d s \tag{3.10}
\end{equation*}
$$

Therefore we deduce that $\mathcal{S}_{1}\left[\hat{u}_{1}\right]=\mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[u_{1}\right]\right]$ satisfies

$$
\begin{align*}
& \mathcal{S}_{1}\left[\hat{u}_{1}\right]= \int_{0}^{\infty} \sin \left(x_{1} \xi_{1}\right) \int_{0}^{x_{1}} e^{\left(s-x_{1}\right)\left|\xi^{\prime}\right|} \hat{v}\left(s, \xi^{\prime}, t\right) d s d x_{1} \\
&= \int_{0}^{\infty} e^{s\left|\xi^{\prime}\right|} \hat{v}\left(s, \xi^{\prime}, t\right)\left(\int_{s}^{\infty} e^{-x_{1}\left|\xi^{\prime}\right|} \sin \left(x_{1} \xi_{1}\right) d x_{1}\right) d s \\
&= \frac{1}{|\xi|^{2}} \int_{0}^{\infty}\left(\sin \left(s \xi_{1}\right)+\xi_{1} \cos \left(s \xi_{1}\right)\right) \hat{v}\left(s, \xi^{\prime}, t\right) d s \\
&= \frac{1}{|\xi|^{2}} \int_{0}^{\infty}\left(\sin \left(x_{1} \xi_{1}\right)+\xi_{1} \cos \left(x_{1} \xi_{1}\right)\right)\left(\left|\xi^{\prime}\right| \mathcal{F}^{\prime}\left[H(t) a_{1}\right]+\mathcal{F}^{\prime}\left[\partial_{1} K(t) a_{1}\right]\right) d x_{1} \\
&= \frac{\left|\xi^{\prime}\right|}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[H(t) a_{1}\right]\right]+\frac{1}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1} K(t) a_{1}\right]\right]+\frac{\left|\xi^{\prime}\right| \xi_{1}}{|\xi|^{2}} \mathcal{C}_{1}\left[\mathcal{F}^{\prime}\left[H(t) a_{1}\right]\right] \\
&= \quad \frac{\xi_{1}}{|\xi|^{2}} \mathcal{C}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1} K(t) a_{1}\right]\right] \\
&|\xi|^{2} \\
& \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[H(t) a_{1}\right]\right]+\frac{1}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1} K(t) a_{1}\right]\right]-\frac{\left|\xi^{\prime}\right|}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1} H(t) a_{1}\right]\right] \\
&\left.\quad-\frac{1}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1}^{2} K(t) a_{1}\right]\right]\right] \tag{3.11}\\
&= \frac{\left|\xi^{\prime}\right|}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\left(1-\partial_{1}\right) H(t) a_{1}\right]\right]+\frac{1}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1}\left(1-\partial_{1}\right) K(t) a_{1}\right]\right] .
\end{align*}
$$

In the above computation, the elementary identity:

$$
e^{-x_{1}\left|\xi^{\prime}\right|} \sin \left(x_{1} \xi_{1}\right)=-\frac{1}{|\xi|^{2}} \partial_{1}\left\{e^{-x_{1}\left|\xi^{\prime}\right|}\left(\sin \left(x_{1} \xi_{1}\right)+\xi_{1} \cos \left(x_{1} \xi_{1}\right)\right)\right\}
$$

is used and the condition $\left.a_{1}\right|_{x_{1}=0}=0$ is not used. Hence we have obtained

$$
\begin{aligned}
u_{1}(t)= & \mathcal{F}^{-1}\left[\frac{1}{\left|\xi^{\prime}\right|}\left(1-\frac{\xi_{1}^{2}}{|\xi|^{2}}\right) \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\left(1-\partial_{1}\right) H(t) a_{1}\right]\right]\right. \\
& \left.+\frac{1}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{1}\left(1-\partial_{1}\right) K(t) a_{1}\right]\right]\right]\left.\right|_{\mathbb{R}_{+}^{d}} \\
= & S_{1}\left[a_{1}\right](t)
\end{aligned}
$$

Next, we get from the first equation (1.1) for $i=2, \ldots, d$,

$$
\begin{equation*}
\partial_{t} \hat{u}_{i}-\partial_{1}^{2} \hat{u}_{i}+\left|\xi^{\prime}\right|^{2} \hat{u}_{i}+\sqrt{-1} \xi_{i} \hat{p}=0 \tag{3.12}
\end{equation*}
$$

Since (3.4)-(3.5), we have

$$
\hat{p}=\frac{1}{\left|\xi^{\prime}\right|}\left(\partial_{t} \hat{u}_{1}-\partial_{1}^{2} \hat{u}_{1}+\left|\xi^{\prime}\right|^{2} \hat{u}_{1}\right)
$$

Thus we see that

$$
\hat{w}_{i}:=\hat{u}_{i}+\frac{\sqrt{-1} \xi_{i} \hat{u}_{1}}{\left|\xi^{\prime}\right|} \quad(i=2, \ldots, d)
$$

satisfies the 1-D heat equation in \mathbb{R}^{+}:

$$
\partial_{t} \hat{w}_{i}-\partial_{1}^{2} \hat{w}_{i}+\left|\xi^{\prime}\right|^{2} \hat{w}_{i}=0
$$

subject to

$$
\left.\hat{w}_{i}\right|_{x_{1}=0},\left.\quad \hat{w}_{i}\right|_{t=0}=\hat{a}_{i}+\frac{\sqrt{-1} \xi_{i} \hat{a}_{1}}{\left|\xi^{\prime}\right|}
$$

That is,

$$
\hat{w}_{i}=\mathcal{F}^{\prime}\left[H(t) a_{i}\right]+\frac{1}{\left|\xi^{\prime}\right|} \mathcal{F}^{\prime}\left[\partial_{i} H(t) a_{1}\right]
$$

Therefore we deduce from (3.11) that

$$
\begin{aligned}
\mathcal{S}_{1}\left[\hat{u}_{i}\right]= & \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[H(t) a_{i}\right]\right]+\frac{1}{\left|\xi^{\prime}\right|} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{i} H(t) a_{1}\right]\right]-\frac{\sqrt{-1} \xi_{i}}{\left|\xi^{\prime}\right|} \mathcal{S}_{1}\left[\hat{u}_{1}\right] \\
= & \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[H(t) a_{i}\right]\right]+\frac{1}{\left|\xi^{\prime}\right|} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{i} H(t) a_{1}\right]\right]-\frac{1}{|\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{i}\left(1-\partial_{1}\right) H(t) a_{1}\right]\right] \\
& -\frac{1}{\left|\xi^{\prime}\right||\xi|^{2}} \mathcal{S}_{1}\left[\mathcal{F}^{\prime}\left[\partial_{i} \partial_{1}\left(1-\partial_{1}\right) K(t) a_{1}\right]\right]
\end{aligned}
$$

which yields $u_{i}(t)=S_{i}\left[a_{i} ; a_{1}\right](t)$.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Not Applicable

References

1. Y. Giga, S. Matsui and Y. Shimizu, On estimates in Hardy spaces for the Stokes flow in a half space. Math. Z., 231 (1999), 383-396.
2. L. Grafakos, Classical Fourier analysis, Third edition. Graduate Texts in Mathematics, 249. Springer, New York, 2014.
3. E. H. Lieb and M. Loss, Analysis, Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001.
4. Y. Shibata and S. Shimizu, A decay property of the Fourier transform and its application to the Stokes problem, J. Math. Fluid Mech., 3 (2001), No.3, 213-230.
5. U. Ukai, A solution formula for the Stokes equation in \mathbf{R}_{+}^{n}, Comm. Pure Appl. Math., 40 (1987), No.5, 611-621.
