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Abstract

This note studies the Stokes equations in the half space Rd

+ with the non-slip boundary

condition. We present an explicit solution formula by using the hybrid Fourier-Fourier sine

transform, which is simpler than already known ones.

1. Introduction

In this note we are concerned with the initial-boundary value problem

of the Stokes equations in the half space R
d
+ := R+×R

d−1 = {(z1, . . . , zd) ∈
R
d : z1 > 0} for d ≥ 3 with the non-slip boundary condition:

ut −∆u+∇p = 0 in R
d
+ × (0,∞), (1.1)

∇ · u = 0 in R
d
+ × (0,∞), (1.2)

u|x1=0 = 0, (1.3)

u|t=0 = a, (1.4)

where u = (ui(x, t))1≤i≤d is an unknown velocity field with an associated

pressure p = p(x, t) and a = (ai(x))1≤i≤d is a prescribed velocity field satis-

fying ∇ · a = 0 in R
d
+.

Our main purpose of this note is to construct a solution operator

{S[ · ](t)}t≥0 such that u(t) = S[a](t) is a smooth solution to the Stokes IBVP
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(1.1)-(1.4) for t > 0. Such explicit solution formulae play a fundamental role

in establishing various estimates of solutions and the gradient (cf. [1, 4, 5]).

Our solution formula presented in Theorem 3.1 is obtained by using the

hybrid Fourier-Fourier sine transform, which is simpler than already known

ones. Indeed, the first component u1 is determined only by the initial data

a1 similarly as in the whole space case Rd. As is well-known, each component

ui of a solution u to the corresponding Cauchy problem on R
d is determined

only by the initial data ai:

ui =
d

∑

j=1

e−t∆(δij +RiRj)aj = e−t∆ai

for a = (ai(x))1≤i≤d satisfying ∇·a = 0, where e−t∆ is the heat semigroup in

R
d and Ri is the Riesz operator in R

d with the symbol
√
−1ξi/|ξ|. In addi-

tion, our formula is not necessary for the compatibility boundary condition

a1|x1
= 0.

2. Preliminaries

We use the standard notation for differentiation: ∂t = ∂/∂t and ∂i :=

∂/∂xi for i = 1, . . . , d.

Let F [ · ] denote the Fourier transform in R
d:

F [f ](ξ) :=

∫

Rd

e−
√
−1x·ξf(x) dx,

and let F−1[ · ] denote the associated inverse transform in R
d:

F−1[f̂ ](x) :=
1

(2π)d

∫

Rd

e
√
−1x·ξf̂(ξ) dξ.

Let F ′[f ] denote the x1-tangential Fourier transform of f = f(x) in R
d
+:

F ′[f ](x1, ξ
′) :=

∫

Rd−1

e−
√
−1x′·ξ′f(x1, x

′) dx′

and let F ′−1[f̂ ] denote the associated inverse transform of f̂ = f̂(x1, ξ
′):

F ′−1[f̂ ](x) :=
1

(2π)d−1

∫

Rd−1

e
√
−1x′·ξ′ f̂(x1, ξ

′) dξ′,
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where

x′ = (x2, . . . , xd), ξ′ = (ξ2, . . . , ξd), x′ · ξ′ =
d

∑

k=2

xkξk.

We define the x1-directional Fourier sine (resp. cosine) transform of a

function f = f(x) in R
d
+ by S1[f ] (resp. C1[f ]) as follows: for any ξ1 ∈ R,

S1[f ](ξ1, x
′) := 2

∫ ∞

0
sin(x1ξ1)f(x1, x

′) dx1
(

resp. C1[f ](ξ1, x′) := 2

∫ ∞

0
cos(x1ξ1)f(x1, x

′) dx1

)

with the associated inverse transform of f̂ = f̂(ξ1, x
′) in R

d
+:

S−1
1 [f̂ ](x) :=

1

π

∫ ∞

0
sin(x1ξ1)f̂(ξ1, x

′) dξ1.

Let O1[ · ] denote the odd extension operator in x1:

O1[f ](x) :=

{

f(x1, x
′) for x1 > 0,

−f(−x1, x
′) for x1 < 0.

Note that O1[S1[f ]] = S1[f ], O1[S−1
1 [f̂ ]] = S−1

1 [f̂ ]

and F [O1[f ]] =
1√
−1

S1[F ′[f ]]. We have the inversion formula:

f =
1√
−1

F−1[S1[F ′[f ]]]|
R
d

+
= F ′−1[S−1

1 [S1[F ′[f ]]]]|
R
d

+
.

In addition, we have the formal identities:

ξ1C1[F ′[f ]] = −S1[F ′[∂1f ]], ξ21S1[F ′[f ]] = −S1[F ′[∂2
1f ]],

provided that f = f(x) satisfies f |x1=0 = 0 and f(x1, x
′) → 0 as x1 → +∞.

We define the following two operators:

(−∆)−1f :=
1√
−1

F−1

[

− 1

|ξ|2S1[F ′[f ]]

]∣

∣

∣

∣

R
d

+

=
Γ(d2 + 1)

d(d − 2)π
d

2

∫

R
d

+

(

1

|x−y|d−2
− 1

|(x1+y1, x′−y′)|d−2

)

f(y)dy



✐

“BN18N24” — 2023/7/19 — 14:08 — page 228 — #4
✐

✐

✐

✐

✐

228 DAISUKE HIRATA [June

and

(−∆′)−
1

2 f :=
1√
−1

F−1

[

1

|ξ′|S1[F ′[f ]]

]
∣

∣

∣

∣

R
d

+

= F ′−1

[

1

|ξ′|F
′[f ]

]

=
1

2π
d−1

2

Γ(d−2
2 )

Γ(d−1
2 )

∫

Rd−1

f(x1, y
′)

|x′ − y′|d−2
dy′

with |ξ′| :=
√

∑d
k=2 ξ

2
k
. The above formulae follow from the kernels of the

Newtonian and Riesz potentials respectively (cf. [3] and [2, Theorem 2.4.6]

for instance).

For a given function f : Rd
+ → R, let v̂ = v̂(x1, ξ

′, t) be a solution of the

IBVP of the 1-D heat equation in R+ with a parameter ξ′ ∈ R
d−1:

∂tv̂ − ∂2
1 v̂ + |ξ′|2v̂ = 0, v̂|x1=0 = 0, v̂|t=0 = F ′[f ]. (2.1)

Then we can observe that ŵ(ξ, t) := S1[v̂] is governed by the linear ODE:

d

dt
ŵ + |ξ|2ŵ = 0, ŵ|ξ1=0 = 0, ŵ|t=0 = S1[F ′[f ]] (2.2)

and that v(x, t) := F ′−1[v̂] = 1√
−1

F−1[ŵ] is governed by the heat equation

in R
d
+:

∂tv = ∆v, v|x1=0 = 0, v|t=0 = f. (2.3)

Note that the above problems (2.1)-(2.3) are equivalent via the inversion

formulae with the restriction on R
d
+. By the reflection principle, we obtain

the solution formulae for v̂ and v respectively:

v̂(t) = e−|ξ′|2t
∫ ∞

0
(G(x1 − y1, t)−G(x1 + y1, t))F ′[f ](y1, ξ

′) dy1 (2.4)

and

v(t) =

∫

R
d

+

(

G(x1 − y1, t)−G(x1 + y1, t)
)

d
∏

k=2

G(xk − yk, t)f(y) dy

=: H(t)f, (2.5)

where the 1-D heat kernel G(s, t) = 1√
4πt

exp(− s2

4t ). In addition, if a function
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ŵ = F ′[w](x1, ξ′, t) satisfies the integral form:

ŵ(t) = e−|ξ′|2t
∫ ∞

0

(

G(x1 − y1, t) +G(x1 + y1, t)
)

F ′[f ](y1, ξ
′) dy1, (2.6)

then we get the solution formula:

w(t) =

∫

R
d

+

(

G(x1 − y1, t) +G(x1 + y1, t)
)

d
∏

k=2

G(xk − yk, t)f(y) dy

=: K(t)f, (2.7)

which is a solution of the IBVP of the heat equation subject to the zero-

Neumann boundary condition: ∂1w|x1=0 = 0. Therefore we deduce the

alternative formulae for (2.4) and (2.6) respectively:

v̂(t) = F ′[H(t)f ], ŵ(t) = F ′[K(t)f ]. (2.8)

3. A Solution Formula

In this section, we shall derive the following solution formula.

Theorem 3.1. Let S[a](t) = (S1[a1](t), S2[a2 ; a1](t), . . . , Sd[ad ; a1](t)) be

the operator defined by

S1[a1](t) := (−∆′)−
1

2 (1− ∂1)
(

1− ∂2
1(−∆)−1

)

H(t)a1

− ∂1(1− ∂1)(−∆)−1K(t)a1 (3.1)

and for i = 2, . . . , d,

Si[ai ; a1](t) := H(t)ai + ∂i{(−∆′)−
1

2 + (1− ∂1)(−∆)−1}H(t)a1

+ ∂i(−∆′)−
1

2 ∂1(1− ∂1)(−∆)−1K(t)a1. (3.2)

Then u(t) := S[a](t) is a solution to the problem (1.1)-(1.4).

Proof. Suppose that {u, p} is a sufficiently regular solution to (1.1)-(1.4)

on Rd
+ × [0,∞). Let us set

ûi := F ′[ui](x1, ξ
′, t), p̂ := F ′[p](x1, ξ

′, t), âi := F ′[ai](x1, ξ
′) (3.3)



✐

“BN18N24” — 2023/7/19 — 14:08 — page 230 — #6
✐

✐

✐

✐

✐

230 DAISUKE HIRATA [June

for i = 1, . . . , d. Applying∇· to the first equation (1.1), we have that ∆p = 0,

which yields the following ODE:

(∂2
1 − |ξ′|2)p̂ = 0.

We deduce that

p̂ = p̂(x1, ξ
′, t) = e−x1|ξ′|p̂(0, ξ′, t).

Note that p̂ → 0 as |ξ′| → ∞ or x1 → ∞ and

(∂1 + |ξ′|)p̂ = 0. (3.4)

From the first equation (1.1) for i = 1, we get

∂tû1 − ∂2
1 û1 + |ξ′|2û1 + ∂1p̂ = 0. (3.5)

Let

v̂ := |ξ′|û1 + ∂1û1. (3.6)

From (3.4)-(3.5), we obtain the 1-D heat equation in R
+:

∂tv̂ − ∂2
1 v̂ + |ξ′|2v̂ = 0. (3.7)

On the other hand, we can rewrite by using the second equation (1.2),

v̂ = |ξ′|û1 + F ′[∂1u1] = |ξ′|û1 + F ′
[

−
d

∑

j=2

∂juj

]

= |ξ′|û1 −
√
−1

d
∑

j=2

ξj

∫

Rd−1

e−
√
−1x′·ξ′uj(x1, x

′, t) dx′,

which implies the boundary condition

v̂|x1=0 = 0. (3.8)

We also have the initial condition

v̂|t=0 = |ξ′|â1 + ∂1â1. (3.9)
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In view of (2.1)-(2.8), we observe that the solution v̂ to the IBVP (3.7)-(3.9)

satisfies

v̂ = |ξ′|F ′[H(t)a1] + e−|ξ′|2t
∫ ∞

0
(G(x1−y1, t)−G(x1 + y1, t))

∂

∂y1
â1(y1, ξ

′)dy1

= |ξ′|F ′[H(t)a1]−e−|ξ′|2t
∫ ∞

0

∂

∂y1
(G(x1−y1, t)−G(x1 + y1, t))â1(y1, ξ

′)dy1

= |ξ′|F ′[H(t)a1]+e−|ξ′|2t
∫ ∞

0

∂

∂x1
(G(x1−y1, t)+G(x1 + y1, t))â1(y1, ξ

′)dy1

= |ξ′|F ′[H(t)a1]+F ′[∂1K(t)a1].

Here we solve the ODE (3.6) with û1|x1=0 = 0 to get

û1(x1, ξ
′, t) =

∫ x1

0
e(s−x1)|ξ′|v̂(s, ξ′, t)ds. (3.10)

Therefore we deduce that S1[û1] = S1[F ′[u1]] satisfies

S1[û1] =

∫ ∞

0
sin(x1ξ1)

∫ x1

0
e(s−x1)|ξ′|v̂(s, ξ′, t)dsdx1

=

∫ ∞

0
es|ξ

′|v̂(s, ξ′, t)

(
∫ ∞

s

e−x1|ξ′| sin(x1ξ1)dx1

)

ds

=
1

|ξ|2
∫ ∞

0
(sin(sξ1) + ξ1 cos(sξ1)) v̂(s, ξ

′, t)ds

=
1

|ξ|2
∫ ∞

0
(sin(x1ξ1)+ξ1 cos(x1ξ1))

(

|ξ′|F ′[H(t)a1]+F ′[∂1K(t)a1]
)

dx1

=
|ξ′|
|ξ|2S1[F ′[H(t)a1]] +

1

|ξ|2S1[F ′[∂1K(t)a1]] +
|ξ′|ξ1
|ξ|2 C1

[

F ′[H(t)a1]
]

+
ξ1
|ξ|2C1[F

′ [∂1K(t)a1]]

=
|ξ′|
|ξ|2S1[F ′[H(t)a1]] +

1

|ξ|2S1[F ′[∂1K(t)a1]]−
|ξ′|
|ξ|2S1[F ′[∂1H(t)a1]]

− 1

|ξ|2S1[F ′[∂2
1K(t)a1]]]

=
|ξ′|
|ξ|2S1[F ′[(1− ∂1)H(t)a1]] +

1

|ξ|2S1[F ′[∂1(1− ∂1)K(t)a1]]. (3.11)
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In the above computation, the elementary identity:

e−x1|ξ′| sin(x1ξ1) = − 1

|ξ|2 ∂1{e
−x1|ξ′| (sin(x1ξ1) + ξ1 cos(x1ξ1))}

is used and the condition a1|x1=0 = 0 is not used. Hence we have obtained

u1(t) =F−1
[ 1

|ξ′|

(

1− ξ21
|ξ|2

)

S1[F ′[(1− ∂1)H(t)a1]]

+
1

|ξ|2S1[F ′[∂1(1− ∂1)K(t)a1]]
]

∣

∣

∣

∣

R
d

+

=S1[a1](t).

Next, we get from the first equation (1.1) for i = 2, . . . , d,

∂tûi − ∂2
1 ûi + |ξ′|2ûi +

√
−1ξip̂ = 0. (3.12)

Since (3.4)-(3.5), we have

p̂ =
1

|ξ′|(∂tû1 − ∂2
1 û1 + |ξ′|2û1).

Thus we see that

ŵi := ûi +

√
−1ξiû1
|ξ′| (i = 2, . . . , d)

satisfies the 1-D heat equation in R
+:

∂tŵi − ∂2
1ŵi + |ξ′|2ŵi = 0

subject to

ŵi|x1=0, ŵi|t=0 = âi +

√
−1ξiâ1
|ξ′| .

That is,

ŵi = F ′[H(t)ai] +
1

|ξ′|F
′[∂iH(t)a1].
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Therefore we deduce from (3.11) that

S1[ûi] =S1[F ′[H(t)ai]] +
1

|ξ′|S1[F ′[∂iH(t)a1]]−
√
−1ξi
|ξ′| S1[û1]

=S1[F ′[H(t)ai]] +
1

|ξ′|S1[F ′[∂iH(t)a1]]−
1

|ξ|2S1[F ′[∂i(1−∂1)H(t)a1]]

− 1

|ξ′||ξ|2S1[F ′[∂i∂1(1− ∂1)K(t)a1]],

which yields ui(t) = Si[ai ; a1](t). ���
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