

國立清華大學七十七學年度 應數所博士班入學考試題

機率論：

1. Let Y be an integrable r.v. (random variable) on probability space $\{\Omega, \mathcal{F}, P\}$ and \mathcal{G} be a sub σ -field of \mathcal{F}
 - (i) Define the conditional expectation $E(Y|\mathcal{G})$ of Y relative to \mathcal{G} . (5%)
 - (ii) Prove the existence and uniqueness (up to equivalence) of $E(Y|\mathcal{G})$ (15%)
 - (iii) If X and Y are independent and $\mathcal{G} = \sigma(X)$, the σ -field generated by X . Prove that $E(Y|\mathcal{G}) = E(Y)$ a.s. (10%)
 - (iv) Applying (ii) and (iii) prove that an integrable random variable is independent of itself if and only if it is constant a.s. (10%)
2. For a sequence A_1, A_2, \dots of events in a probability space $\{\Omega, \mathcal{F}, P\}$ consider the σ -fields $\mathcal{F}_n = \sigma\{A_n, A_{n+1}, \dots\}$ and their intersection $\mathcal{I} = \bigcap_{n=1}^{\infty} \mathcal{F}_n$. \mathcal{I} is called the tail σ -field associated with the sequence $\{A_n\}$, and its

elements are called tail events. If A_1, A_2, \dots is a sequence of independent events, prove that for each tail event A , $P(A)$ is either 0 or 1. (10%)

3. (i) State Lindeberg's (central limit) theorem. (5%)

(ii) Suppose that $X_1, X_2, \dots, X_n \dots$ are independent r.v.'s with density

$$P\{X_j = \sqrt{j}\} = P\{X_j = -\sqrt{j}\} = \frac{1}{2}, \quad j = 1, 2, \dots$$

Find two sequences of constants $\{a_n\}$ and $\{b_n\}$ such

that $\frac{(X_1 + \dots + X_n) - a_n}{b_n}$ converges in distribution to

$N(0, 1)$. Applying Lindeberg's theorem verify your answer. (10%)

4. Let $X_1, X_2, \dots, X_n, \dots$ be i.i.d. r.v.'s with density

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x < 0. \end{cases}$$

(i) State the definition of stopping time

(optional r.v.) relative to $\{X_n\}$. (5%)

(ii) For $c > 0$, define $T = \inf\{n \geq 1 : S_n \geq c\}$, where $S_n =$

$X_1 + \dots + X_n$. Verify that T is a stopping time

relative to $\{X_n\}$. (10%)

(iii) Find the density function of T . In other words,

compute $P\{T=k\}$ for $k = 1, 2, \dots$. (10%)

(iv) Find the distribution function of $S_T - c$.

(Hint: For $y > 0$, compute $P\{S_T - c > y\}$). (10%)

Recall that the density of S_n is

$$[\lambda^n / (n-1)!] x^{n-1} e^{-\lambda x} \text{ for } x \geq 0 \text{ and zero elsewhere.}$$

微分方程：

1. Explain the following terms

15% (i) ω -limit set

(ii) orbital stability

(iii) unstable manifold.

2. Consider the following system

$$(*) \begin{cases} x' = x(1 - \frac{x}{K}) - \frac{2xy}{1+x} \\ y' = (\frac{2x}{1+x} - 1)y \end{cases} \quad K > 0 \text{ is a parameter.}$$
$$x(0) = x_0 > 0, \quad y(0) = y_0 > 0,$$

25% (i) Show that (*) has a unique solution $x(t), y(t)$

defined on $[0, \infty)$ which are positive and bounded

(ii) Do stability analysis for system (*) for various

$$K > 0$$

(iii) Predict the asymptotic behavior of the solution

$x(t), y(t)$ as $t \rightarrow \infty$ for various $K > 0$.

3. Consider the equation

$$x'' + f(x)x' + h(x) = 0$$

10% where $xh(x) > 0, x \neq 0, f(x) > 0, x \neq 0$ and

$$H(x) = \int_0^x h(s)ds \rightarrow \infty \text{ as } |x| \rightarrow \infty$$

Show that the equilibrium solution $x \equiv 0$ is globally asymptotically stable.

(Hint: use Liapunov function $V(x, y) = \frac{y^2}{2} + H(x)$
 where $y = x'$).

4. Solve $xu_x + yu_y = \lambda u$
 10% $u(x, 0) = g(x)$

by characteristic method.

5. Show that a solution $U \in C^2(\bar{\Omega})$ of
 15% $\Delta U = 0 \quad \text{in } \Omega$
 $U = f \quad \text{on } \partial\Omega$

minimizes the Dirichlet integral $\int_{\Omega} |\nabla U|^2 dx$ among all
 functions in $C^1(\bar{\Omega})$ with boundary values f .

6. Use energy method to show that the following initial-
 15% boundary value problem

$$u_t = u_{xx} - u^3, \quad 0 \leq x \leq 1$$

$$u(x, 0) = u_0(x)$$

$$u(0, t) = a(t), \quad u(1, t) = b(t)$$

has at most one smooth solution (Hint: Use the energy
 method on the difference of two solutions)

7. Let $\Omega = \{x \in \mathbb{R}^n: |x| > 1\}$ and $u \in C^2(\bar{\Omega})$. Assume $\Delta u = 0$ in
 15% Ω and $\lim_{x \rightarrow \infty} u(x) = 0$. Show that $\max_{\Omega} |u| = \max_{\partial\Omega} |u|$.

分析：

1. For a set $A \subseteq \mathbb{R}^d$, let I_A denote its indicator function; i.e.

$$I_A(x) = \begin{cases} 1 & , \text{ if } x \in A \\ 0 & , \text{ if } x \notin A \end{cases}$$

Show that

10% (a) if $K \subseteq V \subseteq \mathbb{R}^d$, K is compact, V is open, then there is a continuous function $h(x)$ such that

$$I_K(x) \leq h(x) \leq I_V(x), \quad x \in \mathbb{R}^n.$$

15% (b) if $K \subseteq V_1 \cup V_2 \cup \dots \cup V_n \subseteq \mathbb{R}^d$, K is compact, V_1, V_2, \dots, V_n are open, then there exist continuous functions $h_1(x), h_2(x), \dots, h_n(x)$ such that

$$h_i(x) \leq I_{V_i}(x), \quad i = 1, 2, \dots, n, \quad x \in \mathbb{R}^n$$

and

$$\sum_{i=1}^n h_i(x) = 1, \quad x \in K.$$

2. Let μ be the Lebesgue measure on $[0, 1]$. Let $\{f_n\}$ be a sequence of real-valued measurable functions satisfying

15% $\sup_n \int_0^1 f_n^2(x) d\mu(x) < \infty$. Show that for any $\epsilon > 0$,

there is an $\delta > 0$ such that for any measurable set

$E \subseteq [0, 1]$ with $\mu(E) \leq \delta$ we have

$$\sup_n \int_E f_n(x) d\mu(x) \leq \epsilon.$$

3. Let (X, \mathcal{X}, μ) and (Y, \mathcal{Y}, ν) be two σ -finite measure spaces.

15% (a) Define the product measure space

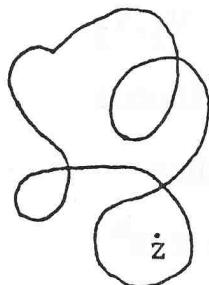
$$(X \times Y, \mathcal{X} \times \mathcal{Y}, \mu \times \nu).$$

10% (b) Show that if $f(x, y)$ is a nonnegative, product measurable function, then

$$\int_Y \int_X f(x, y) d\mu(x) d\nu(y) = \int_X \int_Y f(x, y) d\nu(y) d\mu(x).$$

4. Let \mathbb{C} be the complex plane. Let γ be a closed

15% curve in \mathbb{C} ; i.e. γ is a piecewise continuously differentiable map: $[0, 1] \rightarrow \mathbb{C}$ with $\gamma(0) = \gamma(1)$.



Let

$$\text{Ind}_\gamma(z) = \frac{1}{2\pi i} \int_\gamma \frac{d\zeta}{\zeta - z}, \quad \zeta \notin \{\gamma(t) : 0 \leq t \leq 1\}.$$

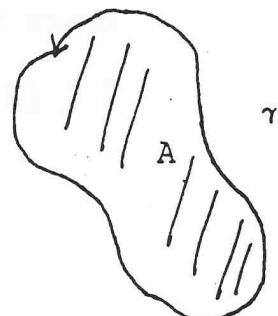
Show that $\text{Ind}_\gamma(z)$ is an integer-valued function.

5. Let $\gamma = \{(x(t), y(t)) : 0 \leq t \leq 1\}$ be a positively oriented simple closed curve in \mathbb{R}^2 (a curve is simple if it does not intersect with itself). Let ℓ be the length of γ , and A the area bounded by γ .

Show that

10% (a) $A = \int_0^1 x(t)y'(t) dt = - \int_0^1 y(t)x'(t) dt$

10% (b) $A \leq \frac{\ell^2}{4\pi}$



數理統計：

1. 令 X_1, X_2, \dots 為獨立同態 (i.i.d.) 之二項隨機變數， $P(X_1=1)=1-P(X_1=0)=p$ 。令 Y 為獨立於 X 數列之 Poisson 變數，其平均值為 λ 。證明

$$U = \sum_{i=1}^Y X_i \quad \text{和} \quad V = Y - \sum_{i=1}^Y X_i$$

為獨立，並求它們的分布。20%

2. 將 1000 人依性別及是否色盲區分的結果如下表：

	男	女
正 常	442	514
色 盲	38	6

根據遺傳模式，上列數字宜有下列之相對頻率

	男	女
正 常	$p/2$	$p^2/2 + pq$
色 盲	$q/2$	$q^2/2$

其中 $q = 1 - p$ 為基因集中色盲基因所佔之比例。請問上列數據及模式是否一致？20%

3. 設 $Y_i = \alpha + \beta X_i + e_i$, $i = 1, \dots, n$ ，其中 e_i 為獨立同態 $N(0, \sigma^2)$ 變數， X_i 為獨立同態之 $N(\mu_x, \sigma_x^2)$ 變數，且 e_i 和 X_i 為獨立。欲估計 $\mu_y = \alpha + \beta \mu_x$ ，統計工作者常用

(i) $\hat{\mu}_y(1) = Y$ ，或
(ii) $\hat{\mu}_y(2) = a + b \mu_x = Y + b(\mu_x - \bar{X})$ ，其中 a, b 表示常用的 α, β 之最小平方估計量，而 μ_x 為已知。

請問 $\hat{\mu}_y(1)$ 和 $\hat{\mu}_y(2)$ 何者較佳（具較小的 MSE）？20%

4. 假設在計錄 n 個獨立 $N(0, \sigma^2)$ 變數時僅知其為小於 -1，介於 -1 與 1 之間或大於 1。

(i) 請問 σ 之最小充分統計量為何？
(ii) 證明 σ 之 MLE 各階動差（moment）皆為 ∞ 。20%

5. 令 X_1, \dots, X_n 為獨立之常態變數、 $EX_i = \xi_i \mu$ ， $Var(X_i) = \sigma^2$ ，此處之 $n+2$ 個變數 $\xi_i \in \{-1, +1\}$ ， $\mu \geq 0$ 和 $\sigma^2 > 0$ 皆為未知數。

(i) 求最大概似估計量 $\hat{\xi}_i, \hat{\mu}$ 和 $\hat{\sigma}^2$ 。
(ii) 證明 $\hat{\mu}$ 和 $\hat{\sigma}^2$ 不為 μ 和 σ^2 之一致（consistent）估計量。
(iii) 求 $H_0: \mu = 0$ 對 $H_1: \mu \neq 0$ 之概似比檢定量及其當 $n \rightarrow \infty$ 時之漸近虛無分布。20%

數學規劃：

1. Suppose that the following system has no solution

$$Ax = 0, \quad x \geq 0 \quad \text{and} \quad cx > 0$$

Devise another system that must have a solution. You have to prove that your answer is correct. (15%)

2. Given a linear (affine) function on \mathbb{R}^n

$$h(x) = a^T x + b,$$

show that it is both convex and concave. Conversely, a real-valued, convex and concave function on \mathbb{R}^n is linear. (15%)

3. Denote by (A, b, c) the standard maximum problem:

$$\max cx$$

$$Ax = b, \quad x \geq 0.$$

Assume that this problem has an optimal solution x^* and $v = cx^*$ is the optimal value of the objective function. Let $\{c^k\}_{k=1}^\infty$ be a sequence of vectors approaching c ; and v_k the optimal value of the problem (A, b, c^k) . Show that v_k approaches v . (15%)

4. Show that all basic feasible solutions of a assignment problem are integral vectors by first proving the total unimodularity of the constraint matrix. (15%)

5. Find all extreme rays of the convex cone

$$k = \{x \in \mathbb{R}^n, Cx \geq 0\},$$

where C is an $n \times n$ non-singular matrix. (15%)

6. (i) The polar cone \bar{S} of the cone S is defined as the

cone $\{y: y \cdot x \geq 0, \text{ for all } x \in S\}$. Find a convex

cone k for which $k \neq \bar{k}$. (10%)

(ii) Show that if k_1 and k_2 are finite cones, then so

are $k_1 + k_2$ and $k_1 \cap k_2$. (15%)