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1. Let Y be an integrable r.v. (random variable) on

probability space {Q,%,P} and ¢ be a sub o-field of &

(i) Define the conditional expectation E(Y|g¢) of Y
relative to g¢. (5%)

(ii) Prove the existence and uniqueness {up to
equivalence) of E(Ylg) (15%)

(iii) If X and Y are indepehdent and ¢ = o(X), the
o-field generated by X. Prove that E(Y|g) = E(Y)
8:8. (10%)

(iv) Applying (ii) and (iii) prove that an integrable

random variable is independent of itself if and

only if it is constant a.s. (10%)
2. For a seguence Al’Az"" of events in a probability
space {0,%,P} consider the o-fields %n = o{An,An+l...}
and their intersection 7 = ”2:1 ﬁn. J is called the tail

o-field associated with the sequence {An}, and its
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elements are callad tail events. If Al,Az,... is a
sequence of independent events, prove that for each tail

event A, P(A) is either 0 or 1. (10%)

3. (i) State Lindeberg's (central limit) theorem.(5%)

(ii) Suppose that Xl'XZ""’Xn"' are independent r.v.'s
with density
P(X.=V3} = P{X.==V3} = %, j = 1.2,....
| ] 2
Find two sequences of constants {an} and {bn} such
(X, +... +X )-a
n

that 1 5 = converges in distribution to

n

N(0,1). Applying Lindeberg's theorem verify your

answer. (10%)

4. Let xl’XZ""’Xﬁ’ ... be i.i.d. r.v.'s with density
M g0
f(x) = {
0 , x <0

(1) State the definition of stopping time
(optional r.v.) relative to {Xn). (5%)

(ii) For ¢ > 0, define T = inf{m21: Snzc}, where Sn =
Xl+...+Xn. Verify that T is a stopping time
relative to {Xn}. (10%)

(iii) Find the density function of T. In other words,
compute P{T=k} for k = 1,2,... . (10%)

(iv) Find the distribﬁtion function of ST—c. |
(Hint: For y>0, compute P{Sp-c>y1). (10%)
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Recall that the density of Sn'is

[)xn/(n-l)!]'xn"le-)\x for x > 0 and zero elsewhere.

WD
1. Explain the followig terms
15% (i) w-limit set
(ii) orbital stability

(iii) unstable manifold.

2. Consider the following system

(*) {y' =
x(0)

2% .
(1+x -1)y K>0 is a parumeter.
25% (i) Show that (*) has a unique solution x(t), y(t)

= x5 >0, y(0) =y, >0,

defined on [0,*) which are positive and bounded
(ii) Do stability analysis for system (*) for various
K >0
(iii) Predict the asymptotic behavior of the solution

x(t), y(t) as t » @ for various K > 0.

3. Consider the equation
x" + f(x)x' + h(x) =

10% where xh(x) > 0, x # 0, f(x) > 0, x # 0 and
H(x) = J h(s)ds =» ® as |x| » @

Show that the equilibrium solution x = 0 is globally

asymptotically stable.
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(Hint: use Liapunov function V(x,y) = 25 + H(x)

where y = x').

4. Solve XUu_ +yu_ =Au
X Y
10% u(x,0) = g(x)

by characteristc method.

5. Show that a solution U € Cz(ﬁ) of

AU =0 in Q
lg%
Uus=f¢£ on 4

minimizes the Dirichlet integral J |VU|2dX among all
0

functions in C‘(ﬁ) with boundary values f.

6. Use energy method to show that the following initial-

o\

15 boundary value problem
u(x,0) = uo(x)
u(0,t) = a(t), u(l,t) = b(t)
has at most one smooth solution (Hint: Use the energy

method on the difference of two solutions)

7. Let O = {xERn: |x|>1} and u € Cz(a). Assume Au = 0 in
ID% Q and lim u(x) = 0. Show that max |u| = max |u].
X% 0 an
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1. For a set A C Rd, let IA denote its indicator

function; i.e.

1oj;df gk &
I,(x) = {

0 , if x € A

Show that
10% (a) if KCVC Rd, K is compact, V is open, then
there is a continuous function h(x) such that

(%) < h(x) £ I (x), x € R™.

8 . d :

15% (b) 4f K'C Vl u VZU"'UVn CR™, K is compact, Vl,v2
, e, Vn are open, then there exist continuous
functions hl(x), hz(x),..., hn(x) such that

. n
hi(x) < IV.(X)’ 120 1y 2y vt Y x € R

and

2. Let p be the Lebesgue measure on [0,1]. Let {fn} be a

15% sequence of real-valued measurable functions satisfy-
L2
ing sup J fn(x)dp(x) ¢ ®, Show that for any € > 0,
n 0

there is an 6 > 0 Such that for any measurable set
EC [0,1] with p(E) € & we have

sup J £ (x)du(x) < €.
n “E.
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Let (X,%,n) and (Y,y,v) be two o-finite measure
spaces.
(a) Define the product measure space
(X x Y, & x ¢, uxv).
(b) Show that if f(x,y) is a nonnegative, product

measurable function, then

J J f(x,y)du(x)dv(y) = J J f(x,y)dv(y)du(x).
Y9 X XY

Let C be the complex plane. Let 7 be a closed
curve in C; i.e. v is a piecewise continuously
differentiable map:[0,1] - C with 7(0) = (1),
Let

2ri (-z’

Ind (z) = —l—J 9Lt e r(t):0¢k<1) .
¥

Show that Ind7(z) is an integer-valued function.

Let v = {(x(t),y(t)): 0{t{1} be a positively
oriented simple closed curve in R2 ( a curve is
simple if it does not intersect with itself). Let

¢ be the length of 7, and A the area bounded by ~.

Show that
1 1
(a) A = J' x(£)y' (£)dt = -J v(t)x' (t)dt
0 0
2
(b) A < %; .
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Suppose that the following system has no solution
Ax = 0, x2 0 and cx > 0
Devise another system that must have a solution. You

have to prove that your answer is correct. (15%)

Given a linear (affine) function on R™

h(x) = aTx + b,
show that it is both convex and concave. Conversely,
a real-valued, convex and concave function on R" is

linear. (15%)

Denote by (A,b,c) the standard maximum problem:
max cx
Ax = b, x 2 0.
Assume that this problem has an optimal solution x*
and v = cx* is the optimal value of the objective
function. Let {ck}:él be a sequence of vectors
approaching c; and v, the optimal value of the problem

(A,b,ck). Show that 9 approaches v. (15%)

Show that all basic feasible solutions of a assignment
problem are integral vectors by first proving the

total unimodularity of the constraint matrix. (15%)
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Find

all extreme rays of the convex cone

k = {x€R", Cx 2 0},

where C is an nxn non-singular matrix. (15%)

(1)

(ii) -

The polar cone S of the cone S is defined as the
cone {y: y*x 2 0, for all x€S}. Find a convex
cone k for which k # k. (10%)

Show that if kl and k2 are finite cones, then so

are kl+k2 and klnkZ' (15%)





