區組設計的迴響

黄克華

一. 楔子

歷年來有多位教授在《數學傳播》裡,分別談到了"區組設計 (block design)"的問題,見參考資料 [2]-[5],深入淺出,讀來饒有趣味。佩服之餘不禁信手比畫一番,遂草成本文。我們擬就斯坦納三元系,柯克曼三元系的構作,提出淺顯的觀察,或可收拋磚引玉之效,藉以吸引更多的年輕朋友們加入組合數學的行列裡來。

二. 再訪斯坦納三元系, 柯克 曼三元系

我們先扼要的溫習什麼是斯坦納三元 系、柯克曼三元系及其大集。

令 X 爲一個由 v 個元素組成的集合 (通常是由正整數組成),以 $\binom{X}{3}$ 表示 X 的 所有三元素子集合族。若 $\beta \subseteq \binom{X}{3}$ 且 X 的任意兩相異元素恰落在 β 裡的唯一三元素子集合裡,則稱 (X,β) 爲一個斯坦納三元系,表之爲 STS(v),稱 β 裡的三元素子集合爲區 $\mathfrak{U}(\mathrm{block})$ 。

設 $x \in X$, 且以 r_x 表示 β 裡包含 x 的區組個數, 考慮集合 $\{(y,B)|y \neq x$ 且

 $x, y \in B$ } 的元素個數,得 $v - 1 = 2 \cdot r_x$,是以 $r_x = \frac{v-1}{2}$ 爲一整數且與 x 的選取無關。再以 b 表 β 裡的區組個數,考慮集合 $\{(x, B) | x \in X, B \in \beta$ 且 $x \in B$ } 的元素個數,得 $v \cdot \frac{(v-1)}{2} = 3 \cdot b$,即 $b = \frac{v(v-1)}{6}$,亦爲一正整數。綜合 $\frac{v-1}{2}$, $\frac{v(v-1)}{6}$ 分別爲正整數的事實,可知 v = 6t + 1 或 6t + 3。

尤有進者,當 v=6t+3,即 b=(2t+1)(3t+1)時,如果 β 可以分割 (Partition) 成 3t+1 個子族,且該每一子族均爲 X 的一個分割時,則稱 (X,β) 爲一個 "柯克曼三元系",表之爲 KTS(v)。如果所有三元素子集合 $\binom{X}{3}$ 可以分割成 $\frac{\binom{6t+3}{3}}{(2t+1)(3t+1)} = v-2$ 個柯克曼三元素,則稱其構成一組柯克曼大集,表之爲 LKTS(v)。

正如康文([4], 頁 35,36)所言,由於可分解性所帶來的難度,關於柯克曼三元系大集,至今只有一些零星的結果。LKTS(9)可見康文([4],頁 36)。關於 LKTS(15)最早是由 Denniston 於西元 1979 年藉助電子計算機找到一組答案,見康文([4],頁 32)。同時康教授也利用有限域的協助,直接構作出一組 LKTS(15),見康文([4],頁 36)。而當 $v \geq 21$ 時,LKTS(v) 仍混然未解。

前述兩組 LKTS(15), 簡則簡矣, 但 初學者若欲窺其堂奧,實屬不易,在這篇短文 裡, 我們擬以極爲淺顯的角度, 來構作一些 STS(13), STS(15) (見第四節)。同時, 也 要以異於 Denniston 及康教授的方法, 提供

一組 *LKTS* (15) (見第五節)。

Ξ .KTS(15)與拈戲的關係

首先, 我們觀察一個 KTS(15) 的例子 β_0 , 見康文 ([4], 頁 32)

	第一組	第二組	第三組	第四組	第五組			
第一日	1 2 3	4 8 12	5 10 15	6 11 13	7 9 14			
第二日	1 4 5	2 8 10	3 13 14	6 9 15	7 11 12			
第三日	1 6 7	2 9 11	3 12 15	4 10 14	5 8 13			
第四日	1 8 9	2 12 14	3 5 6	4 11 15	7 10 13			
第五日	1 10 11	2 13 15	3 4 7	5 9 12	6 8 14			
第六日	1 12 13	2 4 6	3 9 10	5 11 14	7 8 15			
第七日	1 14 15	2 5 7	3 8 11	4 9 13	6 10 12			

爲了說明其特殊的架構, 我們先介紹一 種運算, 令 a,b 爲正整數, 以 $(a)_2$, $(b)_2$ 分別表其二進位表法,以二進位的方式算出 $(a)_2$ 與 $(b)_2$ 之和,再算出其對應的十進位

表法,以 $a \oplus b$ 表之,例如: $5 \oplus 7(=$ 101 + 111 = 010) = 2。茲將其在集合 $\{1, 2, 3, 4, \dots, 14, 15\}$ 上的運算表列如下:

\oplus	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1		3	2	5	4	7	6	9	8	11	10	13	12	15	14
2			1	6	7	4	5	10	11	8	9	14	15	12	13
3				7	6	5	4	11	10	9	8	15	14	13	12
4					1	2	3	12	13	14	15	8	9	10	11
5						3	2	13	12	15	14	9	8	11	10
6							1	14	15	12	13	10	11	8	9
7								15	14	13	12	11	10	9	8

{1,12,13}, {1,14,15} 等三元素集合作爲

在不失一般性的情形下, 設{1,2,3}, 各日之第一組, 然後自第一日第二組起按下 日及該日前 j 組均已給定。令 a 爲尚未出

現於第 i 日的最小正整數, b 爲大於 a, 尚 未出現於第 i 日且 $a \oplus b$ 亦尚未出現於第 i日的最小整數, 考慮三元素集 $\{a, b, a \oplus b\}$, 如果該組已出現過, 則不取, 並取消其前一 三元素組, 然後重複前述程序。若不然, 則以 $\{a, b, a \oplus b\}$ 爲第 i 日的第 j+1 組。準此, 就可以得到上述的 KTS(15)。

藉助前述的運算表, 略作說明如下: 例 如就第二日而言, {1, 4, 5} 已選定, 尙爲出 現的最小整數爲2, (即a), 又2 \oplus 3 = 1已 出現, 3不 取, 4,5 已出現在第一組, 不取, 又 $2 \oplus 6 = 4$ 已出現, 6 不取; $2 \oplus 7 =$ 5 已出現, 7 不取; 而 $2 \oplus 8 = 10, 8$ 和10 均爲首次出現,且 {2,8,10} 尚未出 現過,是以 {2,8,10} 爲第二日的第二組。 繼 {2,8,10} 之後,得 {3,12,15},再得 {6,11,13}, 卻已出現於第一日第四組, 故不 取 {6,11,13}, 並取消 {3,12,15}, 是以第 二日第三組爲 {3,13,14} 所取代, 餘類推。 值得一提的是 $a \oplus b$ 的演算法也用在"三堆拈 戲"的求勝步驟裡。(見[1], 頁 6,7)。

爲了要搜尋 LKTS(15), 勢必需要一 些現成的 KTS(15) 才成。下列引裡, 其理 至明,證明從略。

引理: 若 (X,β) , 爲一柯克曼三元系, 且 σ 爲 X 的一個置換, 則 (X, β^{σ}) 亦爲一柯 克曼三元系, 式中 $\beta^{\sigma} = \{\beta^{\sigma} | B \in \beta\}$ 。

設 n 爲一個正整數, 爲方便計, 此後我 們以 N_n 表示集合 $\{1, 2, 3, \dots, n-1, n\}$; 對正整數 a, b 而言, 我們約定:

$$a + b \pmod{n} = \begin{cases} a + b & \text{min } a + b \le n \\ r & \text{min } a + b = tn + r, \\ t \ge 0, \ 1 \le r \le n \end{cases}$$

例: 若 $X = N_{15}$ 並令

$$\sigma_{1}(x) = 2x + 1 \pmod{15}$$

$$\sigma_{2}(x) = 7x \pmod{15}$$

$$\sigma_{3}(x) = x + 2 \pmod{12}, \ 1 \le x \le 12,$$

$$\alpha_{3}(y) = y, \ 13 \le y \le 15;$$

$$\sigma_{4}(y) = x + 1 \pmod{10}, \ 1 \le x \le 10;$$

$$\sigma_{4}(y) = y, \ 11 \le y \le 15$$

則 $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ 均爲 \mathbf{N}_{15} 的置換。令 $\beta_1 =$ $\beta_0^{\sigma_1}, \ \beta_2 = \beta_2^{\sigma_1}, \ \beta_3 = \beta_1^{\sigma_2}, \ \beta_4 = \beta_3^{\sigma_3},$ $\beta_5 = \beta_4^{\sigma_4}, \ \beta_6 = \beta_5^{\sigma_4}$ (式中 β_0 請見本節 之首例), 則 (X, β_i) , $0 \le i \le 6$, 亦均各爲 柯克曼三元系。

如何選取 β 及適當的置換 σ , 使得 β , β^{σ} 互斥, 實爲一重要且有趣的課題。

四. $\mathbf{STS}(13)$, $\mathbf{STS}(15)$ 的實際 構作

在這一節裡, 我們擬實際構作多組 STS (13), KTS(15), 以及 LKTS(15)。最根 本的構想是在 $\binom{\mathbf{N}_{13}}{3}$ 裡找個三元素集合 A, 在 $i \neq j$ 時合於 A + i, A + j 至多只有 一個公共元素的要求, 式中 $A + i = \{x + x\}$ $i(mod 13)|x \in A\}$, 視 0 與 13 爲相同的元 素。

若 $A = \{1, b, c\}, 1 < b < c$, 定義其差集 d(A) 爲 $\{\pm(b-1), \pm(c-b), \pm(c-1)\}$, 式中 $\pm a$ 取其値介於 1 與 7 之間者。下面的引理提供了一個選取的辦法,其證明甚爲淺顯,從略。

引理: 若 $A = \{1, b, c\} \in \binom{\mathbf{N}_{13}}{3},$ 1 < b < c, 且 c - b, b - 1, 1 - c 兩兩 互異, 則 $|A + i \cap A + j| \le 1,$ $i \ne j$ 。

如果 $A = \{1, b, c\} \in \binom{\mathbf{N}_{13}}{3}$ 滿足引理裡的條件,則 $\widetilde{A} = \{A + i | 0 \le i \le 12\}$ 爲由 \mathbf{N}_{13} 裡 13 個三元素子集合組成(恰爲 STS(13) 區組數 26 的一半),並且 \mathbf{N}_{13} 的任意兩相異點至多落在 \widetilde{A} 裡一個三元素子集。因此 \widetilde{A} 裡的三元素集尙不違背斯坦納三元系的要求。是否可在 \widetilde{A} 上添加其他的三元素子像,使其構成一個斯坦納三元系,或甚至於是柯克曼三元系呢?下面的引理告訴我們只要另外找一個 B,且 d(A),d(B) 互斥即可。

引理: 若 $A, B \in \binom{\mathbf{N}_{13}}{3}$ 滿足 |d(A)| = |d(B)| = 3 及 d(A), d(B) 互斥的條件,則 $|A+i\cap B+j| \leq 1$ 對 $0 \leq i, j \leq 12$ 均能成立。因此, $(\mathbf{N}_{13}, \widetilde{A} \cup \widetilde{B})$ 爲一個斯坦納三元系 STS(13),式中 $\widetilde{A} \cup \widetilde{B} = \{A+i, B+j | 0 \leq i, j \leq 12\}$ 。

例: 在 \mathbf{N}_{13} 裡, $\{1,2,5\}$, $\{1,2,11\}$ 均以 $\{1,3,4\}$ 為其差集,而 $\{1,3,8\}$, $\{1,3,9\}$ 均以 $\{2,5,6\}$ 為其差集,且此兩差集 $\{1,3,4\}$ 與 $\{2,5,6\}$ 互斥。根據前述引理,我們得到四個斯坦納三元系, $\{1,2,\widetilde{5}\} \cup \{1,3,\widetilde{8}\} \cup \{1,2,\widetilde{5}\} \cup \{1,3,\widetilde{9}\}, \{1,2,\widetilde{11}\} \cup \{1,3,\widetilde{8}\}$ 和 $\{1,2,\widetilde{11}\} \cup \{1,3,\widetilde{9}\}$ 。

其次我們考慮斯坦納三元系 STS(15)。 因為 STS(15) 的區組數 35, 比 15 的兩倍 多 5, 是以仿前述構想造出來的三元素子集 族尙不足以構成 STS(15), 然而我們可適當 的選取其餘 5 個區組, 使其合併起來後形成 STS(15)。

在 \mathbf{N}_{15} 裡, $\{1,2,5\}$, $\{1,2,13\}$ 以 $\{1,3,4\}$ 爲其差集, 而 $\{1,3,9\}$, $\{1,3,10\}$ 以 $\{2,6,7\}$ 爲其差集, 且該兩差集 $\{1,3,4\}$, $\{2,6,7\}$ 互斥, 是以 $\{1,2,\widetilde{5}\}$ \cup $\{1,3,\widetilde{9}\}$ 裡有 30 個三元素子集, 且 \mathbf{N}_{15} 的任意兩相異點至多落於其中的一個。值得注意的是 $\{1,3,4\}$ \cup $\{1,6,7\}$ 與 \mathbf{N}_{15} 的前半 $\{1,2,\cdots,7\}$ 相較, 唯獨漏掉了 5。這項觀察提醒我們以 $\{1,6,11\}$, $\{2,7,12\}$, $\{3,8,13\}$, $\{4,9,14\}$, $\{5,10,15\}$ 補足之。我們可以得到:

$$\begin{array}{rcl} \beta_1 & = & \{1,2,\widetilde{5}\} \cup \{1,3,\widetilde{9}\} \cup \{1,6,\widetilde{11}\}, \\ \beta_2 & = & \{1,2,\widetilde{5}\} \cup \{1,3,\widetilde{10}\} \cup \{1,6,\widetilde{11}\}, \\ \beta_3 & = & \{1,2,\widetilde{13}\} \cup \{1,3,\widetilde{9}\} \cup \{1,6,\widetilde{11}\}, \\ \beta_4 & = & \{1,2,\widetilde{13}\} \cup \{1,3,\widetilde{10}\} \cup \{1,6,\widetilde{11}\} \end{array}$$

此等均爲STS(15), 且 β_1 , β_4 更爲KTS(15)。

五.LKTS(15) 的一個例子

在康文([4], 頁 32,36) 裡,提供兩 組LKTS (15),它們分別藉著電子計算機及 有限域的協助而構作出來。在這一節裡,我們 擬再提出一組 LKTS(15),其構作方法及驗 證均極爲淺顯。

承續在上節所考慮的構想,考慮下列的KTS(15),記為 H_0

1	2	14	3	7	8	4	5	12	6	9	11	10	13	15
1	3	13	2	7	12	4	11	14	5	6	15	8	9	10
1	4	10	2	3	6	5	9	13	7	14	15	8	11	12
1	5	11	2	9	15	3	10	12	4	6	7	8	13	14
1	6	8	2	4	13	3	11	15	5	7	10	9	12	14
1	7	9	2	10	11	3	5	14	4	8	15	6	12	13
1	12	15	2	5	8	3	4	9	6	10	14	7	11	13

我們視 H_0 為一母體, 透過 \mathbf{N}_{15} 的一個 適當置換, 而得一串 KTS(15), 並進而說明 其構成一組 LKTS(15)。首先我們觀察 H_0 的特點: 在 H_0 的 35 個區組裡,

- (1) 恰有一個區組 {7,14,15}, 同時包含 14,15。
- (2) 有六個區組含 15, 但不含 14; 表之爲 $\{x, y, 15\}, x < y \le 13$ 。
- (3) 另有六個區組含 14, 但不含 15; 表之爲 $\{x, y, 14\}, x < y \le 14$ 。
- (4) 有 22 個區組不含 14, 15; 表之 爲 $\{x, y, z\}, x < y < z < 14$ 。

尤有進者, 在 (2) 裡, y-x 兩兩互異,

在 (3) 裡, y-x 兩兩互異, 在 (4) 裡, 序對 (y-x,z-y) 兩兩互異。

其次,我們考慮 \mathbf{N}_{15} 的一個置換 $\sigma(x) = x + 1 \pmod{13}, \ 1 \leq x \leq 13,$ $\sigma(14) = 14, \ \sigma(15) = 15.$ 易知, $\sigma^i = x + i \pmod{13}, \ \sigma^i(14) = 14, \ \sigma^i(15) = 15.$ 根據此等置換,令 $H_i = H_0^{\sigma^i}, \ 1 \leq i \leq 12.$ 由前述引理知,每一個 $H_i, \ 0 \leq i \leq 12$ 均爲一組 KTS(15)。

因爲 $\{7, 14, 15\} \in H_0, \sigma^i(\{7, 14, 15\}) =$ $\{7+i(mod\ 13), 14, 15\} \in H_i, 1 \leq i \leq 12,$ 尤有進者 $H_i \cap H_j = \phi, i \neq j$,是以 $\bigcup_{i=0}^{12} H_i$,也就佔滿了 $\binom{\mathbf{N}_{15}}{3}$ 的全體,亦即 $\{H_i | 0 \leq i \leq 12\}$ 構成了一組 LKTS(15)。表列於下:

$H_0(1)$	1	2	14	3	7	8	4	5	12	6	9	11	10	13	15
(2)	1	3	13	2	7	12	4	11	14	5	6	15	8	9	10
(3)	1	4	10	2	3	6	5	9	13	7	14	15	8	11	12
(4)	1	5	11	2	9	15	3	10	12	4	6	7	8	13	14
(5)	1	6	8	2	4	13	3	11	15	5	7	10	9	12	14
(6)	1	7	9	2	10	11	3	5	14	4	8	15	6	12	13
(7)	1	12	15	2	5	8	3	4	9	6	10	14	7	11	13
$H_1(1)$	2		14	4	8	9	5		13		10			11	
(2)	1	2	4	3		13		12			7			10	
(3)	2	5	11	3	4		1	6		8	14		9	12	
(4)	2	6	12	3	10	15		11		5	7	8	1		14
(5)	2		9	1	3	5		12		6		11		13	
(6)	2	8	10		11		4		14	5		15	1		13
(7)	2	13	15	3	6	9	4	5	10	7	11	14	1	8	12
<i>H</i> (1)	3	1	14	5	9	10	1	6	7	Q	11	19	2	12	15
$H_2(1)$ (2)	2		14 5	1	9 4	9	6	13			8			11	
(2)	3	6	12	4	4 5	8	2	7		9	14		10		
(3)	3		13		11				12	6	8	9		10	
(4) (5)	3		10	2	4	6	1 5	13		7	9	12	1		
(5) (6)	3	9	11				5	7			10		1	2	8
	1		15	4	7		5		11		12		2		13
(7)	1	J	10	4	,	10	5	U	11	O	12	14	۷	Э	13
$H_3(1)$	4	5	14	6	10	11	2	7	8	1	9	12	3	13	15
(2)	3	4	6	2	5	10	1	7	14	8	9	15	11	12	13
(3)	4	7	13	5	6	9	3	8	12	10	14	15	1	2	11
(4)	1	4	8	5	12	15	2	6	13	7	9	10	3	11	14
(5)	4	9	11	3	5	7	1	6	15	8	10	13	2	12	14
(6)	4	10	12	1	5	13	6	8	14	7	11	15	2	3	9
(7)	2	4	15	5	8	11	6	7	12	9	13	14	1	3	10

$H_{9}(1)$	10	11	14	3	4	12	1	8	13	2	5	7	6	9	15
(2)	9	10	12	3	8	11	7	13	14	1	2	15	4	5	6
(3)	6	10	13	2	11	12	1	5	9	3	14	15	4	7	8
(4)	1	7	10	5	11	15	6	8	12	2	3	13	4	9	14
(5)	2	4	10	9	11	13	7	12	15	1	3	6	5	8	14
(6)	3	5	10	6	7	11	1	12	14	4	13	15	2	8	9
(7)	8	10	15	1	4	11	5	12	13	2	6	14	3	7	9
$H_{10}(1)$		12		4	5	13	1	2	9	3	6	8	7		15
(2)	10	11	13	4	9	12	1	8	14	2	3	15	5	6	7
(3)	1	7	11	3	12	13	2	6	10	4	14	15	5	8	9
(4)	2	8	11	6	12	15	7	9	13	1	3	4	5	10	14
(5)	3	5	11	1	10	12	8	13	15	2	4	7	6	9	14
(6)	4	6	11	7	8	12	2	13	14	1	5	15	3	9	10
(7)	9	11	15	2	5	12	1	6	13	3	7	14	4	8	10
TT (1)	10	10	1.4	-	_	0	2	0	10	4	_	0	0		
$H_{11}(1)$		13			5	6	2		10	4	7	9	8		
(2)		11			10		2		14	3		15	6		8
(3)	2		12	1		13	3		11	5	14		6	9	10
(4)	3		12		13		1		10	2	4	5	6	11	
(5)	4	6	12		11	13	1		15	3	5	8	7		
(6)	5		12	8	9	13	1		14	2	6	15	4		11
(7)	10	12	15	3	6	13	1	2	7	4	8	14	5	9	11
$H_{12}(1)$	1	13	14	2	6	7	3	4	11	5	8	10	9	12	15
(2)		12		1		11			14		5			8	
(3)		9		1	2	5	4		12	6	14			10	
(4)		10		1		15	2		11	3	5	6		12	
(5)				1		12		10		4	6	9		11	
(6)	6		13	1		10	2		14	3		15		11	
(7)		13		1		7	2		8	5		14		10	

本文承蒙黃大原教授協助、指正,特此 銘謝。

參考書目

- 1. 張鎭華, 拈及其各種變形遊戲, 數學傳播三卷 二期 (民 67年11月), 頁6-15。
- 2. 黄光明, 斯坦納二重奏, 數學傳播十卷一期 (民75年3月), 頁2-8。
- 3. 黄大原, 白雪公主的邀宴, 數學傳播十卷一期 (民75年3月), 頁14-32。
- 4. 康慶德, 從西爾威斯特問題談起, 數學傳播十 五卷二期 (民80年6月), 頁32-42。
- 5. 蕭文強, 有沒有10階影射平面?, 數學傳播十 五卷二期 (民80年6月), 頁22-31。
- --本文作者任教於中壢市健行工專--