
RESEARCH INTEREST
Derchyi Wu

Institute of Mathematics, Academia Sinica, Taipei, Taiwan

The modern research of integrable systems was unleashed by the discov-
ery of the solution procedure for the KdV equation via the inverse scattering
method (IST). The 1 + 1-dimensional IST has been developed or influenced
by works of Gelfand-Levitan, Faddeev, Goldberg, Krein, etc., and completed
by Beals, Coifman, Zhou. Their theory shows that the direct problem is the
construction of bounded eigenfunction normalized at infinity and meromor-
phic outside contours on C and the inverse problem can be formulated as a
Riemann-Hilbert problem where the scattering data is the ∂-data of eigen-
functions.

1 Integrable dPDEs

Integrable dPDEs, including the dispersionless Kadomtsev-Petviashvili equa-
tion, the first and second heavenly equations of Plebanski, the dispersionless
2D Toda (or Boyer-Finley) equation, and the Pavlov equation, are defined by
a commutation [L,M ] = 0 of pairs of one-parameter families of vector fields.
They arise in various problems of mathematical physics and are intensively
studied recently.

Due to the lack of dispersion, integrable dPDEs may or may not exhibit a
gradient catastrophe at finite time. Since the Lax operators are vector fields,
the methods used in soliton theory for proving the existence of eigenfunctions
fail and the inverse problem is intrinsically nonlinear for integrable dPDEs,
unlike the ∂̄-problem formulated for general soliton equations. At last, no
explicit regular localized solutions, like solitons or lumps, exist for integrable
dPDEs. Therefore, it is important to solve the inverse scattering theory for
integrable dPDEs.

In an illustrative example, i. e., the Pavlov equation,

vxt + vyy + vxvxy − vyvxx = 0, v = v(x, y, t) ∈ R, x, y, t ∈ R,

we solve the forward problem via a Beltrami-type equation, a first order
PDE, and a shifted Riemann-Hilbert problem and the inverse problem by
a nonlinear integral equation and obtain a global bounded solution for the
Cauchy problem under a small data constraint. Furthermore, transforming
the nonlinear integral equation into a nonlinear Riemann-Hilbert problem
and solving it via a Newtonian iteration scheme, we complete the inverse
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scattering theory and prove a short time unique solvability of the Cauchy
problem of the Pavlov equation with large initial data.

2 Twisted Hierarchies Associated with the Gen-
eralized sinh-Gordon Equation

Symmetry is a characteristic phenomenon in the theory of integrable sys-
tems. Studying symmetries has been one of the central problems and yields
rewarding results even beyond the field itself. One successful attempt in clas-
sification theory is the study of reduction groups. Recent results have char-
acterized Lax pairs with finite reduction groups of fractional-linear transfor-
mations, i.e., ZN , DN , T, O and I and aroused interest in the classification
theory of automorphic Lie algebras. Despite progress made in the classi-
fication theory of algebraic structures, the analytic properties, such as the
construction of solutions and the investigation of the inverse scattering the-
ory, of integrable systems with reduction groups remain mostly open.

Twisted U/K-hierarchies were introduced via a loop group approach by
Terng to study symmetries of the generalized sine-Gordon equations, famous
for being connected to submanifold geometry in Euclidean spaces. Twisted
U/K-hierarchies are integrable hierarchies with D2 reduction. The loop
group theory of twisted U/K-hierarchies offers a systematic and transparent
approach to investigate the symmetries and the associated inverse scattering
theory. Via this approach, we have succeeded in analyzing algebraic, geomet-
ric and analytic structures of several prototypical integrable hierarchies with
D2 reduction, in particular, the 1-dimensional twisted O(J,J)

O(J)×O(J) -system, or
the generalized sinh-Gordon equation,

A =
(
aji

)
∈ O(q, n− q),

∂xja
k
i = akj fij , fii = 0, i 6= j,

εj∂xjfij + εi∂xifji +
∑

k 6=i, j εkfikfjk = −a1i a1j , i 6= j,

∂xk
fij = fikfkj , 1 ≤ i, j, k ≤ n, distinct.

3 The Cauchy Problem of the Ward Equation

Taking a dimension reduction and a gauge fixing of the self-dual Yang-
Mills equation in the space-time with signature (2, 2), one derives a 2 + 1
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dimensional SU(N) chiral field equation with an additional torsion term,
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Here J lies in SU(N) and ν = (ν0, ν1, ν2) is a constant unit vector. Let-
ting ν = (1, 0, 0) (time-like) and ν = (0, 1, 0) (space-like), we obtain two
integrable systems, the 3-dimensional relativistic-invariant system and the
Ward equation.

One important class of solutions for integrable systems are solitons of
which the associated eigenfunctions ψ(x, y, t, λ) are λ-rational. The con-
struction of simple solitons, and the study of their scattering properties was
done by Manakov and Zakharov for the 3-dimensional relativistic-invariant
system and by many mathematicians, for instance, Terng et. al., for the
Ward equation. Besides, mathematicians, for example, Fokas, et. el., study
the inverse scattering problem and solve the Cauchy problem of the 3-
dimensional relativistic-invariant system if the initial potential is sufficiently
small.

Our main contribution is solving the inverse scattering problem and
the Cauchy problem of the Ward equation without small data constraints.
Namely, for ψ(x, y, 0, λ) possessing no poles, three important algebraic prop-
erties of the Lax pair of the Ward equation, (1) derivation property; (2)
translating invariant property; (3) the principal part being equivalent to
a ∂̄-operator, are used in resolving the large data difficulties into solving
various types of large data Riemann-Hilbert problem. Furthermore, if the
set of poles of ψ(x, y, 0, λ) is of finite number and contained in C\R, then
we use previous solvability of the Cauchy problem (with purely continuous
scattering data), loop group factorizations, and Backlund transformation to
construct the Cauchy problem solution with mixed scattering data.

3


