Recent results on the multiplicative renormalization method for orthogonal polynomials

Hui-Hsiung Kuo

Louisiana State University

Symposium on Probability and Analysis 2010

August 10-12, 2010

Institute of Mathematics, Academia Sinica
Outline

1. Introduction
 - Orthogonal polynomials
 - An example (key idea)
 - Another example (key idea)

2. Multiplicative Renormalization Method
 - OP-generating function
 - MRM procedure
 - Classical distributions

3. Characterization Theorems
 - Characterization problems
 - MRM-applicable measures
 - MRM-factors

4. References

Hui-Hsiung Kuo
Recent results on MRM for orthogonal polynomials
\(\mu: \) a probab measure on \(\mathbb{R} \) such that \(\int_{\mathbb{R}} |x|^n \, d\mu(x) < \infty, \quad \forall n \geq 1 \)

Apply the Gram-Schmidt orthogonalization process to get

\[\{1, x, \ldots, x^n, \ldots\} \mapsto \{P_0(x), P_1(x), \ldots, P_n(x), \ldots\} \]

where \(P_n(x) \) is a poly of degree \(n \) with leading coefficient 1.

Theorem

(Recursion formula) \(\exists \) sequences \(\{\alpha_n\}, \{\omega_n\} \) such that

\[xP_n(x) = P_{n+1}(x) + \alpha_n P_n(x) + \omega_n P_{n-1}, \quad n \geq 0, \]

where \(\omega_0 = 1 \) and \(P_{-1} = 0 \).

Question: Given \(\mu \), how can we derive \(\{P_n(x), \alpha_n, \omega_n\} \)?
\(\mu \): a probab measure on \(\mathbb{R} \) such that \(\int_{\mathbb{R}} |x|^n \, d\mu(x) < \infty, \quad \forall n \geq 1 \)

Apply the **Gram-Schmidt orthogonalization process** to get

\[\{1, x, \ldots, x^n, \ldots\} \rightarrow \{P_0(x), P_1(x), \ldots, P_n(x), \ldots\} \]

where \(P_n(x) \) is a poly of degree \(n \) with leading coefficient 1.

Theorem

(Recursion formula) \(\exists \) sequences \(\{\alpha_n\}, \{\omega_n\} \) such that

\[xP_n(x) = P_{n+1}(x) + \alpha_n P_n(x) + \omega_n P_{n-1}, \quad n \geq 0, \]

where \(\omega_0 = 1 \) and \(P_{-1} = 0 \).

Question: Given \(\mu \), how can we derive \(\{P_n(x), \alpha_n, \omega_n\} \)?
\(\mu\): a probab measure on \(\mathbb{R}\) such that \(\int_{\mathbb{R}} |x|^n \, d\mu(x) < \infty, \quad \forall n \geq 1\)

Apply the **Gram-Schmidt orthogonalization process** to get

\[
\{1, x, \ldots, x^n, \ldots\} \mapsto \{P_0(x), P_1(x), \ldots, P_n(x), \ldots\}
\]

where \(P_n(x)\) is a poly of degree \(n\) with leading coefficient 1.

Theorem

(Recursion formula) \(\exists\) **sequences** \(\{\alpha_n\}, \{\omega_n\}\) **such that**

\[
x P_n(x) = P_{n+1}(x) + \alpha_n P_n(x) + \omega_n P_{n-1}, \quad n \geq 0,
\]

where \(\omega_0 = 1\) and \(P_{-1} = 0\).

Question: Given \(\mu\), how can we derive \(\{P_n(x), \alpha_n, \omega_n\}\)?
μ: a probab measure on \mathbb{R} such that $\int_{\mathbb{R}} |x|^n \, d\mu(x) < \infty$, $\forall n \geq 1$

Apply the **Gram-Schmidt orthogonalization process** to get

$$\{1, x, \ldots, x^n, \ldots\} \mapsto \{P_0(x), P_1(x), \ldots, P_n(x), \ldots\}$$

where $P_n(x)$ is a poly of degree n with leading coefficient 1.

Theorem

(Recursion formula) \exists sequences $\{\alpha_n\}$, $\{\omega_n\}$ such that

$$xP_n(x) = P_{n+1}(x) + \alpha_n P_n(x) + \omega_n P_{n-1}, \quad n \geq 0,$$

where $\omega_0 = 1$ and $P_{-1} = 0$.

Question: Given μ, how can we derive $\{P_n(x), \alpha_n, \omega_n\}$?
Introduction
- Orthogonal polynomials
- An example (key idea)
- Another example (key idea)

Multiplicative Renormalization Method
- OP-generating function
- MRM procedure
- Classical distributions

Characterization Theorems
- Characterization problems
- MRM-applicable measures
- MRM-factors

References

Hui-Hsiung Kuo
Recent results on MRM for orthogonal polynomials
Let μ be Gaussian $N(0, \sigma^2)$. Then

$$E e^{tx} = e^{\frac{1}{2} \sigma^2 t^2}, \quad \psi(t,x) := \frac{e^{tx}}{E e^{tx}} = e^{tx - \frac{1}{2} \sigma^2 t^2}$$

Observation 1 $E[\psi(t,x)\psi(s,x)] = e^{\sigma^2 ts}$ is a function of ts.

Observation 2 We can expand $\psi(t,x)$ as a power series in t

$$\psi(t,x) = \sum_{n=0}^{\infty} \frac{1}{n!} P_n(x)t^n$$

where $P_n(x)$ is a polynomial given by

$$P_n(x) = \sum_{k=0}^{\left\lfloor n/2 \right\rfloor} \binom{n}{2k} (2k - 1)!!(-\sigma^2)^k x^{n-2k}$$

Key Idea Observation 1 \iff P_n's are orthogonal (Hermite)
Let μ be Gaussian $N(0, \sigma^2)$. Then

$$Ee^{tx} = e^{\frac{1}{2} \sigma^2 t^2}, \quad \psi(t, x) := \frac{e^{tx}}{Ee^{tx}} = e^{tx - \frac{1}{2} \sigma^2 t^2}$$

Observation 1 $E[\psi(t, x)\psi(s, x)] = e^{\sigma^2 ts}$ is a function of ts.

Observation 2 We can expand $\psi(t, x)$ as a power series in t

$$\psi(t, x) = \sum_{n=0}^{\infty} \frac{1}{n!} P_n(x) t^n$$

where $P_n(x)$ is a polynomial given by

$$P_n(x) = \sum_{k=0}^{\lceil n/2 \rceil} \binom{n}{2k} (2k - 1)!! (-\sigma^2)^k x^{n-2k}$$

Key Idea Observation 1 \implies P_n’s are orthogonal (Hermite)
Let μ be Gaussian $N(0, \sigma^2)$. Then

$$E e^{tx} = e^{\frac{1}{2} \sigma^2 t^2}, \quad \psi(t, x) := \frac{e^{tx}}{E e^{tx}} = e^{tx} - \frac{1}{2} \sigma^2 t^2$$

Observation 1
$E[\psi(t, x)\psi(s, x)] = e^{\sigma^2 ts}$ is a function of ts.

Observation 2
We can expand $\psi(t, x)$ as a power series in t

$$\psi(t, x) = \sum_{n=0}^{\infty} \frac{1}{n!} P_n(x) t^n$$

where $P_n(x)$ is a polynomial given by

$$P_n(x) = \sum_{k=0}^{[n/2]} \binom{n}{2k} (2k - 1)!! (-\sigma^2)^k x^{n-2k}$$

Key Idea
Observation 1 \implies P_n's are orthogonal (Hermite)
Let μ be Gaussian $N(0, \sigma^2)$. Then

$$Ee^{tx} = e^{\frac{1}{2} \sigma^2 t^2}, \quad \psi(t, x) := \frac{e^{tx}}{Ee^{tx}} = e^{tx - \frac{1}{2} \sigma^2 t^2}$$

Observation 1 $E[\psi(t, x)\psi(s, x)] = e^{\sigma^2 ts}$ is a function of ts.

Observation 2 We can expand $\psi(t, x)$ as a power series in t

$$\psi(t, x) = \sum_{n=0}^{\infty} \frac{1}{n!} P_n(x) t^n$$

where $P_n(x)$ is a polynomial given by

$$P_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} (2k - 1)!! (\sigma^2)^k x^{n-2k}$$

Key Idea Observation 1 $\implies P_n$’s are orthogonal (Hermite)
Let μ be Gaussian $N(0, \sigma^2)$. Then

$$Ee^{tx} = e^{\frac{1}{2}\sigma^2 t^2}, \quad \psi(t, x) := \frac{e^{tx}}{Ee^{tx}} = e^{tx-\frac{1}{2}\sigma^2 t^2}$$

Observation 1 $E[\psi(t, x)\psi(s, x)] = e^{\sigma^2 ts}$ is a function of ts.

Observation 2 We can expand $\psi(t, x)$ as a power series in t

$$\psi(t, x) = \sum_{n=0}^{\infty} \frac{1}{n!} P_n(x) t^n$$

where $P_n(x)$ is a polynomial given by

$$P_n(x) = \sum_{k=0}^{\left\lfloor n/2 \right\rfloor} \binom{n}{2k} (2k - 1)!! (-\sigma^2)^k x^{n-2k}$$

Key Idea Observation 1 \implies P_n’s are orthogonal (Hermite)
Let μ be Gaussian $N(0, \sigma^2)$. Then

$$\mathbb{E}e^{tx} = e^{\frac{1}{2} \sigma^2 t^2}, \quad \psi(t,x) := \frac{e^{tx}}{\mathbb{E}e^{tx}} = e^{tx - \frac{1}{2} \sigma^2 t^2}$$

Observation 1 $\mathbb{E} [\psi(t,x)\psi(s,x)] = e^{\sigma^2 ts}$ is a function of ts.
Observation 2 We can expand $\psi(t,x)$ as a power series in t

$$\psi(t,x) = \sum_{n=0}^{\infty} \frac{1}{n!} P_n(x) t^n$$

where $P_n(x)$ is a polynomial given by

$$P_n(x) = \sum_{k=0}^{\left\lfloor n/2 \right\rfloor} \binom{n}{2k} (2k - 1)!! (-\sigma^2)^k x^{n-2k}$$

Key Idea Observation 1 \implies P_n’s are orthogonal (Hermite)
Outline

1. Introduction
 - Orthogonal polynomials
 - An example (key idea)
 - Another example (key idea)

2. Multiplicative Renormalization Method
 - OP-generating function
 - MRM procedure
 - Classical distributions

3. Characterization Theorems
 - Characterization problems
 - MRM-applicable measures
 - MRM-factors

4. References

Hui-Hsiung Kuo
Recent results on MRM for orthogonal polynomials
Let μ be Poisson with parameter λ. Then

$$E e^{\rho(t)x} = e^{-\lambda(1-e^{\rho(t)})}$$

$$\psi(t, x) := \frac{e^{\rho(t)x}}{E e^{\rho(t)x}} = e^{\rho(t)x + \lambda(1-e^{\rho(t)})}$$

Then we have

$$E \left[\psi(t, x) \psi(s, x) \right] = e^{\lambda(e^{\rho(t)}-1)(e^{\rho(s)}-1)}$$

Observation $E \left[\psi(t, x) \psi(s, x) \right]$ is a function of ts if we take

$$e^{\rho(t)} - 1 = t, \quad i.e., \quad \rho(t) = \ln(1 + t)$$

Thus we have the function

$$\psi(t, x) = e^{-\lambda t}(1 + t)^x$$
Let μ be Poisson with parameter λ. Then

$$E e^{\rho(t)x} = e^{-\lambda(1-e^{\rho(t)})}$$

Let $\psi(t, x) := \frac{e^{\rho(t)x}}{E e^{\rho(t)x}} = e^{\rho(t)x} + \lambda(1-e^{\rho(t)})$.

Then we have

$$E[\psi(t, x)\psi(s, x)] = e^{\lambda(e^{\rho(t)}-1)(e^{\rho(s)}-1)}$$

Observation $E[\psi(t, x)\psi(s, x)]$ is a function of ts if we take $e^{\rho(t)} - 1 = t$, i.e., $\rho(t) = \ln(1 + t)$.

Thus we have the function

$$\psi(t, x) = e^{-\lambda t}(1 + t)^x.$$
Let \(\mu \) be Poisson with parameter \(\lambda \). Then

\[
E e^{\rho(t)x} = e^{-\lambda(1-e^{\rho(t)})}
\]

Let

\[
\psi(t, x) := \frac{e^{\rho(t)x}}{E e^{\rho(t)x}} = e^{\rho(t)x} + \lambda(1-e^{\rho(t)})
\]

Then we have

\[
E [\psi(t, x)\psi(s, x)] = e^{\lambda(e^{\rho(t)}-1)(e^{\rho(s)}-1)}
\]

Observation \(E [\psi(t, x)\psi(s, x)] \) is a function of \(ts \) if we take

\[
e^{\rho(t)} - 1 = t, \quad i.e., \quad \rho(t) = \ln(1 + t)
\]

Thus we have the function

\[
\psi(t, x) = e^{-\lambda t}(1 + t)^x
\]
Let μ be Poisson with parameter λ. Then

$$E e^{\rho(t)x} = e^{-\lambda(1-e^{\rho(t)})}$$

$$\psi(t, x) := \frac{e^{\rho(t)x}}{E e^{\rho(t)x}} = e^{\rho(t)x+\lambda(1-e^{\rho(t)})}$$

Then we have

$$E[\psi(t, x)\psi(s, x)] = e^{\lambda(e^{\rho(t)}-1)(e^{\rho(s)}-1)}$$

Observation $E[\psi(t, x)\psi(s, x)]$ is a function of ts if we take

$$e^{\rho(t)} - 1 = t, \text{ i.e., } \rho(t) = \ln(1 + t)$$

Thus we have the function

$$\psi(t, x) = e^{-\lambda t}(1 + t)^x$$
Let μ be Poisson with parameter λ. Then
\[E e^{\rho(t)x} = e^{-\lambda(1-e^{\rho(t)})} \]

\[\psi(t, x) := \frac{e^{\rho(t)x}}{E e^{\rho(t)x}} = e^{\rho(t)x + \lambda(1-e^{\rho(t)})} \]

Then we have
\[E [\psi(t, x)\psi(s, x)] = e^{\lambda(e^{\rho(t)}-1)(e^{\rho(s)}-1)} \]

Observation \[E [\psi(t, x)\psi(s, x)] \] is a function of ts if we take
\[e^{\rho(t)} - 1 = t, \quad i.e., \quad \rho(t) = \ln(1 + t) \]

Thus we have the function
\[\psi(t, x) = e^{-\lambda t}(1 + t)^x \]
Let μ be Poisson with parameter λ. Then

$$Ee^{\rho(t)x} = e^{-\lambda(1-e^{\rho(t)})}$$

$$\psi(t, x) := \frac{e^{\rho(t)x}}{Ee^{\rho(t)x}} = e^{\rho(t)x} + \lambda(1-e^{\rho(t)})$$

Then we have

$$E[\psi(t, x)\psi(s, x)] = e^{\lambda(e^{\rho(t)}-1)(e^{\rho(s)}-1)}$$

Observation

$E[\psi(t, x)\psi(s, x)]$ is a function of ts if we take

$$e^{\rho(t)} - 1 = t, \quad i.e., \quad \rho(t) = \ln(1 + t)$$

Thus we have the function

$$\psi(t, x) = e^{-\lambda t}(1 + t)^x$$
Expand $\psi(t, x)$ as a power series in t:

$$\psi(t, x) = \sum_{n=0}^{\infty} \frac{1}{n!} C_n(x) t^n$$

where $C_n(x)$ is a polynomial given by

$$C_n(x) = \sum_{k=0}^{n} \binom{n}{k} (-\lambda)^k p_{x,n-k}$$

with $p_{x,0} = 1$, $p_{x,m} = x(x-1)(x-2)\cdots(x-m+1)$, $m \geq 1$.

Key Idea The above Observation \implies C_n’s are orthogonal (Charlier polynomials)
Expand \(\psi(t, x) \) as a power series in \(t \):

\[
\psi(t, x) = \sum_{n=0}^{\infty} \frac{1}{n!} C_n(x) t^n
\]

where \(C_n(x) \) is a polynomial given by

\[
C_n(x) = \sum_{k=0}^{n} \binom{n}{k} (-\lambda)^k p_{x,n-k}
\]

with \(p_{x,0} = 1, \ p_{x,m} = x(x-1)(x-2) \cdots (x-m+1), \ m \geq 1. \)

Key Idea The above Observation \(\implies \) \(C_n \)'s are orthogonal
(Charlier polynomials)
Expand $\psi(t, x)$ as a power series in t:

$$
\psi(t, x) = \sum_{n=0}^{\infty} \frac{1}{n!} C_n(x) t^n
$$

where $C_n(x)$ is a polynomial given by

$$
C_n(x) = \sum_{k=0}^{n} \binom{n}{k} (-\lambda)^k p_{x, n-k}
$$

with $p_{x, 0} = 1$, $p_{x, m} = x(x - 1)(x - 2) \cdots (x - m + 1)$, $m \geq 1$.

Key Idea The above Observation $\implies C_n$’s are orthogonal (Charlier polynomials)
Outline

1. Introduction
 - Orthogonal polynomials
 - An example (key idea)
 - Another example (key idea)

2. Multiplicative Renormalization Method
 - OP-generating function
 - MRM procedure
 - Classical distributions

3. Characterization Theorems
 - Characterization problems
 - MRM-applicable measures
 - MRM-factors

4. References
Let μ be a probab measure with infinite support and $\{P_n(x)\}$ the orthog polys from the Gram-Schmidt orthog process.

Definition

A function $\psi(t, x)$ is called an OP-generating function for μ if it has the series expansion in t

$$\psi(t, x) = \sum_{n=0}^{\infty} c_n P_n(x) t^n$$

where $c_n \neq 0$ for all n.

Remark $\psi(t, x)$ is called a generating function in the literature. It is a close-form function, e.g.,

$$\psi(t, x) = e^{tx - \frac{1}{2}\sigma^2 t^2} \text{ (Gaussian)}, \quad \psi(t, x) = e^{-\lambda t} (1 + t)^x \text{ (Poisson)}$$
Let μ be a probab measure with infinite support and $\{P_n(x)\}$ the orthog polys from the Gram-Schmidt orthog process.

Definition

A function $\psi(t, x)$ is called an **OP-generating function** for μ if it has the series expansion in t

$$\psi(t, x) = \sum_{n=0}^{\infty} c_n P_n(x) t^n$$

where $c_n \neq 0$ for all n.

Remark $\psi(t, x)$ is called a generating function in the literature. It is a close-form function, e.g.,

$$\psi(t, x) = e^{tx} - \frac{1}{2} \sigma^2 t^2 \quad \text{(Gaussian)} \quad \psi(t, x) = e^{-\lambda t} (1 + t)^x \quad \text{(Poisson)}$$
Let μ be a probab measure with infinite support and $\{P_n(x)\}$ the orthog polys from the Gram-Schmidt orthog process.

Definition

A function $\psi(t, x)$ is called an OP-generating function for μ if it has the series expansion in t

$$\psi(t, x) = \sum_{n=0}^{\infty} c_n P_n(x) t^n$$

where $c_n \neq 0$ for all n.

Remark $\psi(t, x)$ is called a generating function in the literature. It is a close-form function, e.g.,

$$\psi(t, x) = e^{tx - \frac{1}{2} \sigma^2 t^2} \text{ (Gaussian)}, \quad \psi(t, x) = e^{-\lambda t} (1 + t)^x \text{ (Poisson)}$$

Hui-Hsiung Kuo
Recent results on MRM for orthogonal polynomials
Let μ be a probab measure with infinite support and $\{P_n(x)\}$ the orthog polys from the Gram-Schmidt orthog process.

Definition

A function $\psi(t, x)$ is called an **OP-generating function** for μ if it has the series expansion in t

$$\psi(t, x) = \sum_{n=0}^{\infty} c_n P_n(x) t^n$$

where $c_n \neq 0$ for all n.

Remark $\psi(t, x)$ is called a **generating function** in the literature. It is a close-form function, e.g.,

$$\psi(t, x) = e^{tx} - \frac{1}{2} \sigma^2 t^2 \quad \text{(Gaussian)}, \quad \psi(t, x) = e^{-\lambda t} (1 + t)^x \quad \text{(Poisson)}$$
Fact \[\| P_n \|^2 := \lambda_n = \omega_0 \omega_1 \cdots \omega_n, \ n \geq 0, \text{ or } \omega_n = \lambda_n/\lambda_{n-1} \]

Theorem

If \(\psi(t, x) \) is an OP-generating function for \(\mu \), then

\[
\int_{\mathbb{R}} \psi(t, x)^2 \, d\mu(x) = \sum_{n=0}^{\infty} c_n^2 \lambda_n t^{2n}
\]

\[
\int_{\mathbb{R}} x \psi(t, x)^2 \, d\mu(x) = \sum_{n=0}^{\infty} \left(c_n^2 \alpha_n \lambda_n t^{2n} + 2c_n c_{n-1} \lambda_n t^{2n+1} \right)
\]

where \(c_{-1} = 0 \).

Conclusion If we have an OP-generating function \(\psi(t, x) \), then we can find \(\{ P_n(x), \alpha_n, \omega_n \} \).

Question How can we find an OP-generating function \(\psi(t, x) \)?
Fact \[\| P_n \|^2 := \lambda_n = \omega_0 \omega_1 \cdots \omega_n, \ n \geq 0, \text{ or } \omega_n = \lambda_n/\lambda_{n-1} \]

Theorem

If \(\psi(t, x) \) is an OP-generating function for \(\mu \), then

\[
\int_{\mathbb{R}} \psi(t, x)^2 \, d\mu(x) = \sum_{n=0}^{\infty} c_n^2 \lambda_n t^{2n}
\]

\[
\int_{\mathbb{R}} x \psi(t, x)^2 \, d\mu(x) = \sum_{n=0}^{\infty} \left(c_n^2 \alpha_n \lambda_n t^{2n} + 2c_n c_{n-1} \lambda_n t^{2n+1} \right)
\]

where \(c_{-1} = 0 \).

Conclusion If we have an OP-generating function \(\psi(t, x) \), then we can find \(\{ P_n(x), \alpha_n, \omega_n \} \).

Question How can we find an OP-generating function \(\psi(t, x) \)?
Fact \[\| P_n \|^2 := \lambda_n = \omega_0 \omega_1 \cdots \omega_n, \ n \geq 0, \text{ or } \omega_n = \lambda_n / \lambda_{n-1} \]

Theorem

If \(\psi(t, x) \) is an OP-generating function for \(\mu \), then

\[
\int_{\mathbb{R}} \psi(t, x)^2 \, d\mu(x) = \sum_{n=0}^{\infty} c_n^2 \lambda_n t^{2n}
\]

\[
\int_{\mathbb{R}} x \psi(t, x)^2 \, d\mu(x) = \sum_{n=0}^{\infty} \left(c_n^2 \alpha_n \lambda_n t^{2n} + 2c_n c_{n-1} \lambda_n t^{2n+1} \right)
\]

where \(c_{-1} = 0 \).

Conclusion If we have an OP-generating function \(\psi(t, x) \), then we can find \(\{ P_n(x), \alpha_n, \omega_n \} \).

Question How can we find an OP-generating function \(\psi(t, x) \)?

Hui-Hsiung Kuo
Recent results on MRM for orthogonal polynomials
Fact \[\|P_n\|^2 := \lambda_n = \omega_0 \omega_1 \cdots \omega_n, \ n \geq 0, \text{ or } \omega_n = \lambda_n/\lambda_{n-1} \]

Theorem

If \(\psi(t, x) \) is an OP-generating function for \(\mu \), then

\[
\int_{\mathbb{R}} \psi(t, x)^2 \, d\mu(x) = \sum_{n=0}^{\infty} c_n^2 \lambda_n t^{2n} \\
\int_{\mathbb{R}} x \psi(t, x)^2 \, d\mu(x) = \sum_{n=0}^{\infty} \left(c_n^2 \alpha_n \lambda_n t^{2n} + 2c_n c_{n-1} \lambda_n t^{2n+1} \right)
\]

where \(c_{-1} = 0 \).

Conclusion If we have an OP-generating function \(\psi(t, x) \), then we can find \(\{ P_n(x), \alpha_n, \omega_n \} \).

Question How can we find an OP-generating function \(\psi(t, x) \)?
Outline

1. Introduction
 - Orthogonal polynomials
 - An example (key idea)
 - Another example (key idea)

2. Multiplicative Renormalization Method
 - OP-generating function
 - MRM procedure
 - Classical distributions

3. Characterization Theorems
 - Characterization problems
 - MRM-applicable measures
 - MRM-factors

4. References
Let \(h(x) \) be a “good” function. Define two functions

\[
\theta(t) = \int_{\mathbb{R}} h(tx) \, d\mu(x), \quad \tilde{\theta}(t, s) = \int_{\mathbb{R}} h(tx) h(sx) \, d\mu(x)
\]

Theorem

(Asai-Kubo-K, TJM 2003) Let \(\rho(t) \) be an analytic function at 0 with \(\rho(0) = 0 \) and \(\rho'(0) \neq 0 \). Then the multiplicative renormalization

\[
\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}
\]

is an OP-generating function for \(\mu \) if and only if the function

\[
\Theta_\rho(t, s) := \frac{\tilde{\theta}(\rho(t), \rho(s))}{\theta(\rho(t))\theta(\rho(s))}
\]

defined in some neighborhood of \((0, 0)\) is a function of \(ts \).
Let \(h(x) \) be a "good" function. Define two functions

\[
\theta(t) = \int_{\mathbb{R}} h(tx) \, d\mu(x), \quad \tilde{\theta}(t, s) = \int_{\mathbb{R}} h(tx) h(sx) \, d\mu(x)
\]

Theorem

(Asai-Kubo-K, TJM 2003) Let \(\rho(t) \) be an analytic function at 0 with \(\rho(0) = 0 \) and \(\rho'(0) \neq 0 \). Then the multiplicative renormalization

\[
\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}
\]

is an OP-generating function for \(\mu \) if and only if the function

\[
\Theta_\rho(t, s) := \frac{\tilde{\theta}(\rho(t), \rho(s))}{\theta(\rho(t)) \theta(\rho(s))}
\]

defined in some neighborhood of \((0, 0)\) is a function of \(ts \).
Let \(h(x) \) be a “good” function. Define two functions

\[
\begin{align*}
\theta(t) &= \int_{\mathbb{R}} h(tx) \, d\mu(x), \\
\tilde{\theta}(t, s) &= \int_{\mathbb{R}} h(tx)h(sx) \, d\mu(x)
\end{align*}
\]

Theorem

(Asai-Kubo-K, TJM 2003) Let \(\rho(t) \) be an analytic function at 0 with \(\rho(0) = 0 \) and \(\rho'(0) \neq 0 \). Then the multiplicative renormalization

\[
\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}
\]

is an OP-generating function for \(\mu \) if and only if the function

\[
\Theta_{\rho}(t, s) := \frac{\tilde{\theta}(\rho(t), \rho(s))}{\theta(\rho(t))\theta(\rho(s))}
\]

defined in some neighborhood of \((0, 0)\) is a function of \(ts\).
Let \(h(x) \) be a “good" function. Define two functions

\[
\theta(t) = \int_{\mathbb{R}} h(tx) \, d\mu(x), \quad \tilde{\theta}(t, s) = \int_{\mathbb{R}} h(tx) h(sx) \, d\mu(x)
\]

Theorem

(Asai-Kubo-K, TJM 2003) Let \(\rho(t) \) be an analytic function at 0 with \(\rho(0) = 0 \) and \(\rho'(0) \neq 0 \). Then the multiplicative renormalization

\[
\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}
\]

is an OP-generating function for \(\mu \) if and only if the function

\[
\Theta_{\rho}(t, s) := \frac{\tilde{\theta}(\rho(t), \rho(s))}{\theta(\rho(t))\theta(\rho(s))}
\]

defined in some neighborhood of \((0, 0)\) is a function of \(ts\).
Let $h(x)$ be a "good" function. Define two functions

$$
\theta(t) = \int_{\mathbb{R}} h(tx) \, d\mu(x), \quad \tilde{\theta}(t, s) = \int_{\mathbb{R}} h(tx) h(sx) \, d\mu(x)
$$

Theorem

(Asai-Kubo-K, TJM 2003) Let $\rho(t)$ be an analytic function at 0 with $\rho(0) = 0$ and $\rho'(0) \neq 0$. Then the multiplicative renormalization

$$
\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}
$$

is an OP-generating function for μ if and only if the function

$$
\Theta_\rho(t, s) := \frac{\tilde{\theta}(\rho(t), \rho(s))}{\theta(\rho(t))\theta(\rho(s))}
$$

defined in some neighborhood of $(0, 0)$ is a function of ts.

Hui-Hsiung Kuo

Recent results on MRM for orthogonal polynomials
Let \(h(x) \) be a “good” function. Define two functions

\[
\theta(t) = \int_{\mathbb{R}} h(tx) \, d\mu(x), \quad \tilde{\theta}(t, s) = \int_{\mathbb{R}} h(tx) h(sx) \, d\mu(x)
\]

Theorem

(Asai-Kubo-K, TJM 2003) Let \(\rho(t) \) be an analytic function at 0 with \(\rho(0) = 0 \) and \(\rho'(0) \neq 0 \). Then the multiplicative renormalization

\[
\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}
\]

is an OP-generating function for \(\mu \) if and only if the function

\[
\Theta_\rho(t, s) := \frac{\tilde{\theta}(\rho(t), \rho(s))}{\theta(\rho(t))\theta(\rho(s))}
\]

defined in some neighborhood of \((0, 0)\) is a function of \(ts \).
Definition

A probab measure μ is called **MRM-applicable** for $h(x)$ if there exists an analytic function $\rho(t)$ at 0 with $\rho(0) = 0$, $\rho'(0) \neq 0$ such that $\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}$ is an OP-generating function for μ.

Remark A probab measure can be MRM-applicable for two different functions (not so obvious).

Definition

A function $h(x)$ is called an **MRM-factor** for μ if μ is MRM-applicable for $h(x)$.

Remark A function can be an MRM-factor for several different probab measures (obvious, e.g., e^x is an MRM-factor for Gaussian and Poisson measures).
Definition

A probab measure \(\mu \) is called \textit{MRM-applicable} for \(h(x) \) if there exists an analytic function \(\rho(t) \) at 0 with \(\rho(0) = 0 \), \(\rho'(0) \neq 0 \) such that

\[
\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}
\]

is an OP-generating function for \(\mu \).

Remark A probab measure can be MRM-applicable for two different functions (not so obvious).

Definition

A function \(h(x) \) is called an \textit{MRM-factor} for \(\mu \) if \(\mu \) is MRM-applicable for \(h(x) \).

Remark A function can be an MRM-factor for several different probab measures (obvious, e.g., \(e^x \) is an MRM-factor for Gaussian and Poisson measures).
Definition

A probab measure μ is called \textit{MRM-applicable} for $h(x)$ if there exists an analytic function $\rho(t)$ at 0 with $\rho(0) = 0$, $\rho'(0) \neq 0$ such that $\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}$ is an OP-generating function for μ.

Remark A probab measure can be MRM-applicable for two different functions (not so obvious).

Definition

A function $h(x)$ is called an \textit{MRM-factor} for μ if μ is MRM-applicable for $h(x)$.

Remark A function can be an MRM-factor for several different probab measures (obvious, e.g., e^x is an MRM-factor for Gaussian and Poisson measures).
Definition

A probab measure μ is called **MRM-applicable** for $h(x)$ if there exists an analytic function $\rho(t)$ at 0 with $\rho(0) = 0$, $\rho'(0) \neq 0$ such that $\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}$ is an OP-generating function for μ.

Remark A probab measure can be MRM-applicable for two different functions (not so obvious).

Definition

A function $h(x)$ is called an **MRM-factor** for μ if μ is MRM-applicable for $h(x)$.

Remark A function can be an MRM-factor for several different probab measures (obvious, e.g., e^x is an MRM-factor for Gaussian and Poisson measures).
Definition

A probab measure μ is called *MRM-applicable* for $h(x)$ if there exists an analytic function $\rho(t)$ at 0 with $\rho(0) = 0$, $\rho'(0) \neq 0$ such that $\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}$ is an OP-generating function for μ.

Remark A probab measure can be MRM-applicable for two different functions (not so obvious).

Definition

A function $h(x)$ is called an *MRM-factor* for μ if μ is MRM-applicable for $h(x)$.

Remark A function can be an MRM-factor for several different probab measures (obvious, e.g., e^x is an MRM-factor for Gaussian and Poisson measures).
Definition

A probab measure μ is called **MRM-applicable** for $h(x)$ if there exists an analytic function $\rho(t)$ at 0 with $\rho(0) = 0$, $\rho'(0) \neq 0$ such that $\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}$ is an OP-generating function for μ.

Remark A probab measure can be MRM-applicable for two different functions (not so obvious).

Definition

A function $h(x)$ is called an **MRM-factor** for μ if μ is MRM-applicable for $h(x)$.

Remark A function can be an MRM-factor for several different probab measures (obvious, e.g., e^x is an MRM-factor for Gaussian and Poisson measures).
Definition

A probab measure \(\mu \) is called **MRM-applicable** for \(h(x) \) if there exists an analytic function \(\rho(t) \) at 0 with \(\rho(0) = 0, \rho'(0) \neq 0 \) such that \(\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))} \) is an OP-generating function for \(\mu \).

Remark A probab measure can be MRM-applicable for two different functions (not so obvious).

Definition

A function \(h(x) \) is called an **MRM-factor** for \(\mu \) if \(\mu \) is MRM-applicable for \(h(x) \).

Remark A function can be an MRM-factor for several different probab measures (obvious, e.g., \(e^x \) is an MRM-factor for Gaussian and Poisson measures).
Definition

A probab measure μ is called **MRM-applicable** for $h(x)$ if there exists an analytic function $\rho(t)$ at 0 with $\rho(0) = 0$, $\rho'(0) \neq 0$ such that $\psi(t, x) := \frac{h(\rho(t)x)}{\theta(\rho(t))}$ is an OP-generating function for μ.

Remark A probab measure can be MRM-applicable for two different functions (not so obvious).

Definition

A function $h(x)$ is called an **MRM-factor** for μ if μ is MRM-applicable for $h(x)$.

Remark A function can be an MRM-factor for several different probab measures (obvious, e.g., e^x is an MRM-factor for Gaussian and Poisson measures).
Summary MRM procedure:

\[\mu \rightarrow h(x) \rightarrow \{ \theta(t), \tilde{\theta}(t, s) \} \rightarrow \{ \rho(t), \Theta_{\rho}(t, s) \} \rightarrow \psi(t, x) \]

Remarks

1. \(h(x) : e^x, (1 - x)^{-\kappa}, \) hypergeometric functions

2. \(\theta(t) = ? (\mu \text{ given or unknown}) \)

3. \(\rho(t) = ? (\mu \text{ given or unknown}) \)
Summary MRM procedure:

\[\mu \rightarrow h(x) \rightarrow \left\{ \theta(t), \tilde{\theta}(t, s) \right\} \rightarrow \left\{ \rho(t), \Theta_{\rho}(t, s) \right\} \rightarrow \psi(t, x) \]

Remarks

1. \(h(x) : e^x, (1 - x)^{-\kappa}, \) hypergeometric functions
2. \(\theta(t) = ? (\mu \text{ given or unknown}) \)
3. \(\rho(t) = ? (\mu \text{ given or unknown}) \)
Summary MRM procedure:

\[\mu \rightarrow h(x) \rightarrow \left\{ \theta(t), \tilde{\theta}(t, s) \right\} \rightarrow \left\{ \rho(t), \Theta_\rho(t, s) \right\} \rightarrow \psi(t, x) \]

Remarks

1. \(h(x) : e^x, (1 - x)^{-\kappa} \), hypergeometric functions

2. \(\theta(t) = ? (\mu \text{ given or unknown}) \)

3. \(\rho(t) = ? (\mu \text{ given or unknown}) \)
Summary MRM procedure:

\[
\mu \longrightarrow h(x) \longrightarrow \left\{ \theta(t), \tilde{\theta}(t, s) \right\} \longrightarrow \left\{ \rho(t), \Theta_{\rho}(t, s) \right\} \longrightarrow \psi(t, x)
\]

Remarks

1. \(h(x) : e^x, (1 - x)^{-\kappa} \), hypergeometric functions

2. \(\theta(t) = ? \) (\(\mu \) given or unknown)

3. \(\rho(t) = ? \) (\(\mu \) given or unknown)
Summary MRM procedure:

\[
\mu \longrightarrow h(x) \longrightarrow \{\theta(t), \tilde{\theta}(t, s)\} \longrightarrow \{\rho(t), \Theta_{\rho}(t, s)\} \longrightarrow \psi(t, x)
\]

Remarks

1. \(h(x)\): \(e^x, (1 - x)^{-\kappa}\), hypergeometric functions
2. \(\theta(t) = ? \) (\(\mu\) given or unknown)
3. \(\rho(t) = ? \) (\(\mu\) given or unknown)
Outline

1. Introduction
 - Orthogonal polynomials
 - An example (key idea)
 - Another example (key idea)

2. Multiplicative Renormalization Method
 - OP-generating function
 - MRM procedure
 - Classical distributions

3. Characterization Theorems
 - Characterization problems
 - MRM-applicable measures
 - MRM-factors

4. References

Hui-Hsiung Kuo
Recent results on MRM for orthogonal polynomials
Classical distributions with their OP-generating functions:

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>(h(x))</th>
<th>(\theta(t))</th>
<th>(\rho(t))</th>
<th>(\psi(t, x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>(e^x)</td>
<td>(e^{\frac{1}{2} \sigma^2 t^2})</td>
<td>(t)</td>
<td>(e^{tx - \frac{1}{2} \sigma^2 t^2})</td>
</tr>
<tr>
<td>Poisson</td>
<td>(e^x)</td>
<td>(e^{\lambda(e^t-1)})</td>
<td>(\ln(1 + t))</td>
<td>(e^{-\lambda t(1 + t)^x})</td>
</tr>
<tr>
<td>gamma</td>
<td>(e^x)</td>
<td>(\frac{1}{(1-t)^{\alpha}})</td>
<td>(\frac{t}{1+t})</td>
<td>((1 + t)^{-\alpha} e^{\frac{tx}{1+t}})</td>
</tr>
<tr>
<td>uniform</td>
<td>(\frac{1}{\sqrt{1-x}})</td>
<td>(\frac{2}{\sqrt{1+t} + \sqrt{1-t}})</td>
<td>(\frac{2t}{1+t^2})</td>
<td>(\frac{1}{\sqrt{1-2tx+t^2}})</td>
</tr>
<tr>
<td>arcsine</td>
<td>(\frac{1}{1-x})</td>
<td>(\frac{1}{\sqrt{1-t^2}})</td>
<td>(\frac{2t}{1+t^2})</td>
<td>(\frac{1-t^2}{1-2tx+t^2})</td>
</tr>
<tr>
<td>semi-circle</td>
<td>(\frac{1}{1-x})</td>
<td>(\frac{2}{1+\sqrt{1-t^2}})</td>
<td>(\frac{2t}{1+t^2})</td>
<td>(\frac{1}{1-2tx+t^2})</td>
</tr>
<tr>
<td>beta</td>
<td>(\frac{1}{(1-x)^{\beta}})</td>
<td>(\frac{2^\beta}{(1+\sqrt{1-t^2})^{\beta}})</td>
<td>(\frac{2t}{1+t^2})</td>
<td>(\frac{1}{(1-2tx+t^2)^{\beta}})</td>
</tr>
<tr>
<td>Pascal</td>
<td>(e^x)</td>
<td>(\frac{(1-q)^r}{(1-ql)^r})</td>
<td>(\ln \frac{1+t}{1+qt})</td>
<td>((1+t)^x (1+qt)^{-x-r})</td>
</tr>
<tr>
<td>Stoch area</td>
<td>(e^x)</td>
<td>(\sec t)</td>
<td>(\tan^{-1} t)</td>
<td>(\frac{e^x \tan^{-1} t}{\sqrt{1+t^2}})</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
 - Orthogonal polynomials
 - An example (key idea)
 - Another example (key idea)

2. Multiplicative Renormalization Method
 - OP-generating function
 - MRM procedure
 - Classical distributions

3. Characterization Theorems
 - Characterization problems
 - MRM-applicable measures
 - MRM-factors

4. References

Recent results on MRM for orthogonal polynomials
Note that in the previous chart, there are several distributions \(\mu \) which have the same MRM-factor \(h(x) \).

Example 1 Gaussian, Poisson, gamma, Pascal, and stochastic area all have the same MRM-factor \(h(x) = e^x \).

Example 2 The arcsine, semi-circle and the beta with \(\beta = 1 \) all have the same MRM-factor \(h(x) = (1 - x)^{-1} \).

This leads to the following characterization problem.

First Characterization Problem. Given an MRM-factor \(h(x) \), find all probab measures \(\mu \) which are MRM-applicable for \(h(x) \).
Note that in the previous chart, there are several distributions \(\mu \) which have the same MRM-factor \(h(x) \).

Example 1 Gaussian, Poisson, gamma, Pascal, and stochastic area all have the same MRM-factor \(h(x) = e^x \).

Example 2 The arcsine, semi-circle and the beta with \(\beta = 1 \) all have the same MRM-factor \(h(x) = (1 - x)^{-1} \).

This leads to the following characterization problem.

First Characterization Problem. Given an MRM-factor \(h(x) \), find all probab measures \(\mu \) which are MRM-applicable for \(h(x) \).
Note that in the previous chart, there are several distributions μ which have the same MRM-factor $h(x)$.

Example 1 Gaussian, Poisson, gamma, Pascal, and stochastic area all have the same MRM-factor $h(x) = e^x$.

Example 2 The arcsine, semi-circle and the beta with $\beta = 1$ all have the same MRM-factor $h(x) = (1 - x)^{-1}$.

This leads to the following characterization problem.

First Characterization Problem. Given an MRM-factor $h(x)$, find all probab measures μ which are MRM-applicable for $h(x)$.
Note that in the previous chart, there are several distributions μ which have the same MRM-factor $h(x)$.

Example 1 Gaussian, Poisson, gamma, Pascal, and stochastic area all have the same MRM-factor $h(x) = e^x$.

Example 2 The arcsine, semi-circle and the beta with $\beta = 1$ all have the same MRM-factor $h(x) = (1 - x)^{-1}$.

This leads to the following characterization problem.

First Characterization Problem. Given an MRM-factor $h(x)$, find all probab measures μ which are MRM-applicable for $h(x)$.
Note that in the previous chart, there are several distributions \(\mu \) which have the same MRM-factor \(h(x) \).

Example 1 Gaussian, Poisson, gamma, Pascal, and stochastic area all have the same MRM-factor \(h(x) = e^x \).

Example 2 The arcsine, semi-circle and the beta with \(\beta = 1 \) all have the same MRM-factor \(h(x) = (1 - x)^{-1} \).

This leads to the following characterization problem.

First Characterization Problem. Given an MRM-factor \(h(x) \), find all probab measures \(\mu \) which are MRM-applicable for \(h(x) \).
Note that in the previous chart, there are several distributions μ which have the same MRM-factor $h(x)$.

Example 1 Gaussian, Poisson, gamma, Pascal, and stochastic area all have the same MRM-factor $h(x) = e^x$.

Example 2 The arcsine, semi-circle and the beta with $\beta = 1$ all have the same MRM-factor $h(x) = (1 - x)^{-1}$.

This leads to the following characterization problem.

First Characterization Problem. Given an MRM-factor $h(x)$, find all probab measures μ which are MRM-applicable for $h(x)$.
On the other hand, a probab measure μ may have two different MRM-factors.

Example For the semi-circle measure μ, we have two different MRM-factors, which lead to different OP-generating functions:

1. $h(x) = \frac{1}{1-x}$ is an MRM-factor for μ. In this case,

 $$\theta(t) = \frac{2}{1 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1}{1 - 2tx + t^2}$$

2. $h(x) = \frac{1}{(1 - x)^2}$ is an MRM-factor for μ. In this case,

 $$\theta(t) = \frac{2}{1 - t^2 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1 - t^2}{(1 - 2tx + t^2)^2}$$
On the other hand, a probab measure μ may have two different MRM-factors.

Example For the semi-circle measure μ, we have two different MRM-factors, which lead to different OP-generating functions:

1. $h(x) = \frac{1}{1 - x}$ is an MRM-factor for μ. In this case,

 $$\theta(t) = \frac{2}{1 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1}{1 - 2tx + t^2}$$

2. $h(x) = \frac{1}{(1 - x)^2}$ is an MRM-factor for μ. In this case,

 $$\theta(t) = \frac{2}{1 - t^2 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1 - t^2}{(1 - 2tx + t^2)^2}$$
On the other hand, a probab measure μ may have two different MRM-factors.

Example For the semi-circle measure μ, we have two different MRM-factors, which lead to different OP-generating functions:

1. $h(x) = \frac{1}{1 - x}$ is an MRM-factor for μ. In this case,

 \[\theta(t) = \frac{2}{1 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1}{1 - 2tx + t^2}\]

2. $h(x) = \frac{1}{(1 - x)^2}$ is an MRM-factor for μ. In this case,

 \[\theta(t) = \frac{2}{1 - t^2 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1 - t^2}{(1 - 2tx + t^2)^2}\]
On the other hand, a probab measure μ may have two different MRM-factors.

Example For the semi-circle measure μ, we have two different MRM-factors, which lead to different OP-generating functions:

1. $h(x) = \frac{1}{1 - x}$ is an MRM-factor for μ. In this case,
 \[
 \theta(t) = \frac{2}{1 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1}{1 - 2tx + t^2}
 \]

2. $h(x) = \frac{1}{(1 - x)^2}$ is an MRM-factor for μ. In this case,
 \[
 \theta(t) = \frac{2}{1 - t^2 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1 - t^2}{(1 - 2tx + t^2)^2}
 \]
On the other hand, a probab measure μ may have two different MRM-factors.

Example For the semi-circle measure μ, we have two different MRM-factors, which lead to different OP-generating functions:

1. $h(x) = \frac{1}{1 - x}$ is an MRM-factor for μ. In this case,

 \[
 \theta(t) = \frac{2}{1 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1}{1 - 2tx + t^2}
 \]

2. $h(x) = \frac{1}{(1 - x)^2}$ is an MRM-factor for μ. In this case,

 \[
 \theta(t) = \frac{2}{1 - t^2 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1 - t^2}{(1 - 2tx + t^2)^2}
 \]
On the other hand, a probab measure μ may have two different MRM-factors.

Example For the semi-circle measure μ, we have two different MRM-factors, which lead to different OP-generating functions:

1. $h(x) = \frac{1}{1-x}$ is an MRM-factor for μ. In this case,

 $$\theta(t) = \frac{2}{1 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1}{1 - 2tx + t^2}$$

2. $h(x) = \frac{1}{(1-x)^2}$ is an MRM-factor for μ. In this case,

 $$\theta(t) = \frac{2}{1 - t^2 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1 - t^2}{(1 - 2tx + t^2)^2}$$
On the other hand, a probab measure μ may have two different MRM-factors.

Example For the semi-circle measure μ, we have two different MRM-factors, which lead to different OP-generating functions:

1. $h(x) = \frac{1}{1 - x}$ is an MRM-factor for μ. In this case,

 $$\theta(t) = \frac{2}{1 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1}{1 - 2tx + t^2}$$

2. $h(x) = \frac{1}{(1 - x)^2}$ is an MRM-factor for μ. In this case,

 $$\theta(t) = \frac{2}{1 - t^2 + \sqrt{1 - t^2}}, \quad \rho(t) = \frac{2t}{1 + t^2}, \quad \psi(t, x) = \frac{1 - t^2}{(1 - 2tx + t^2)^2}$$
This leads to another characterization problem.

Second Characterization Problem. Given an MRM-applicable probab measure \(\mu \), find all MRM-factors \(h(x) \) for \(\mu \).

Finally, observe that the function \(\rho(t) = \frac{2t}{1+t^2} \) is the \(\rho \)-function for several probab measures. Thus we also have the following characterization problem:

Third Characterization Problem. Given a \(\rho \)-function \(\rho(t) \), find all MRM-applicable probab measures \(\mu \) and MRM-factors \(h(x) \), which have the given \(\rho(t) \) as a \(\rho \)-function.
This leads to another characterization problem.

Second Characterization Problem. Given an MRM-applicable probab measure μ, find all MRM-factors $h(x)$ for μ.

Finally, observe that the function $\rho(t) = \frac{2t}{1+t^2}$ is the ρ-function for several probab measures. Thus we also have the following characterization problem:

Third Characterization Problem. Given a ρ-function $\rho(t)$, find all MRM-applicable probab measures μ and MRM-factors $h(x)$, which have the given $\rho(t)$ as a ρ-function.
This leads to another characterization problem.

Second Characterization Problem. Given an MRM-applicable probab measure \(\mu \), find all MRM-factors \(h(x) \) for \(\mu \).

Finally, observe that the function \(\rho(t) = \frac{2t}{1+t^2} \) is the \(\rho \)-function for several probab measures. Thus we also have the following characterization problem:

Third Characterization Problem. Given a \(\rho \)-function \(\rho(t) \), find all MRM-applicable probab measures \(\mu \) and MRM-factors \(h(x) \), which have the given \(\rho(t) \) as a \(\rho \)-function.
This leads to another characterization problem.

Second Characterization Problem. Given an MRM-applicable probab measure μ, find all MRM-factors $h(x)$ for μ.

Finally, observe that the function $\rho(t) = \frac{2t}{1+t^2}$ is the ρ-function for several probab measures. Thus we also have the following characterization problem:

Third Characterization Problem. Given a ρ-function $\rho(t)$, find all MRM-applicable probab measures μ and MRM-factors $h(x)$, which have the given $\rho(t)$ as a ρ-function.
This leads to another characterization problem.

Second Characterization Problem. Given an MRM-applicable probab measure μ, find all MRM-factors $h(x)$ for μ.

Finally, observe that the function $\rho(t) = \frac{2t}{1+t^2}$ is the ρ-function for several probab measures. Thus we also have the following characterization problem:

Third Characterization Problem. Given a ρ-function $\rho(t)$, find all MRM-applicable probab measures μ and MRM-factors $h(x)$, which have the given $\rho(t)$ as a ρ-function.
This leads to another characterization problem.

Second Characterization Problem. Given an MRM-applicable probab measure μ, find all MRM-factors $h(x)$ for μ.

Finally, observe that the function $\rho(t) = \frac{2t}{1+t^2}$ is the ρ-function for several probab measures. Thus we also have the following characterization problem:

Third Characterization Problem. Given a ρ-function $\rho(t)$, find all MRM-applicable probab measures μ and MRM-factors $h(x)$, which have the given $\rho(t)$ as a ρ-function.
Outline

1. Introduction
 - Orthogonal polynomials
 - An example (key idea)
 - Another example (key idea)

2. Multiplicative Renormalization Method
 - OP-generating function
 - MRM procedure
 - Classical distributions

3. Characterization Theorems
 - Characterization problems
 - MRM-applicable measures
 - MRM-factors

4. References
• **First Characterization problem for** \(h(x) = e^x \)

Theorem

(Kubo, IDAQP 2004) *The class of all MRM-applicable probability measures for the function* \(h(x) = e^x \) *consists of translations and dilations of Gaussian, Poisson, gamma, Pascal, and Mexiner measures* \(M_{\kappa, \eta} \) *with parameter* \(\kappa > 0 \) *and* \(\eta \in \mathbb{R} \).

Remark The proof of this theorem is relatively easy comparing with other functions \(h(x) \).
• First Characterization problem for $h(x) = e^x$

Theorem

(Kubo, IDAQP 2004) *The class of all MRM-applicable probability measures for the function $h(x) = e^x$ consists of translations and dilations of Gaussian, Poisson, gamma, Pascal, and Mexiner measures $M_{\kappa,\eta}$ with parameter $\kappa > 0$ and $\eta \in \mathbb{R}$."

Remark The proof of this theorem is relatively easy comparing with other functions $h(x)$.
First Characterization problem for $h(x) = e^x$

Theorem

(Kubo, IDAQP 2004) The class of all MRM-applicable probability measures for the function $h(x) = e^x$ consists of translations and dilations of Gaussian, Poisson, gamma, Pascal, and Mexiner measures $M_{\kappa,\eta}$ with parameter $\kappa > 0$ and $\eta \in \mathbb{R}$.

Remark The proof of this theorem is relatively easy comparing with other functions $h(x)$.
• First Characterization problem for $h(x) = (1 - x)^{-1}$

Note that in the chart of classical distributions, there are two probab measures that are MRM-applicable for $h(x) = (1 - x)^{-1}$, namely,

(1) Arcsine

$$d\mu(x) = \frac{1}{\pi} \frac{1}{\sqrt{1 - x^2}} \, dx, \quad |x| < 1,$$

$$\psi(t, x) = \frac{1 - t^2}{1 - 2tx + t^2}.$$

(2) Semi-circle

$$d\mu(x) = \frac{2}{\pi} \sqrt{1 - x^2} \, dx, \quad |x| < 1,$$

$$\psi(t, x) = \frac{1}{1 - 2tx + t^2}.$$
• First Characterization problem for $h(x) = (1 - x)^{-1}$

Note that in the chart of classical distributions, there are two probab measures that are MRM-applicable for $h(x) = (1 - x)^{-1}$, namely,

(1) Arcsine

$$d_{\mu}(x) = \frac{1}{\pi} \frac{1}{\sqrt{1 - x^2}} \, dx, \quad |x| < 1,$$

$$\psi(t, x) = \frac{1 - t^2}{1 - 2tx + t^2}.$$

(2) Semi-circle

$$d_{\mu}(x) = \frac{2}{\pi} \sqrt{1 - x^2} \, dx, \quad |x| < 1,$$

$$\psi(t, x) = \frac{1}{1 - 2tx + t^2}.$$
• **First Characterization problem** for $h(x) = (1 - x)^{-1}$

Note that in the chart of classical distributions, there are two probab measures that are MRM-applicable for $h(x) = (1 - x)^{-1}$, namely,

1. **Arcsine**

 $$d\mu(x) = \frac{1}{\pi} \frac{1}{\sqrt{1 - x^2}} \, dx, \quad |x| < 1,$$

 $$\psi(t, x) = \frac{1 - t^2}{1 - 2tx + t^2}.$$

2. **Semi-circle**

 $$d\mu(x) = \frac{2}{\pi} \sqrt{1 - x^2} \, dx, \quad |x| < 1,$$

 $$\psi(t, x) = \frac{1}{1 - 2tx + t^2}.$$
• **First Characterization problem for** \(h(x) = (1 - x)^{-1} \)

Note that in the chart of classical distributions, there are two probab measures that are MRM-applicable for \(h(x) = (1 - x)^{-1} \), namely,

1. **Arcsine**

\[
d_{\mu}(x) = \frac{1}{\pi} \frac{1}{\sqrt{1 - x^2}} \, dx, \quad |x| < 1,
\]

\[
\psi(t, x) = \frac{1 - t^2}{1 - 2tx + t^2}.
\]

2. **Semi-circle**

\[
d_{\mu}(x) = \frac{2}{\pi} \sqrt{1 - x^2} \, dx, \quad |x| < 1,
\]

\[
\psi(t, x) = \frac{1}{1 - 2tx + t^2}.
\]
Question Are there other probab measures that are MRM-applicable for $h(x) = (1 - x)^{-1}$?

Theorem

(Kubo-Namli-K, IDAQP 2006) For $0 < a \leq 1$, the probab measure

$$d\mu_a(x) = \frac{a\sqrt{1 - x^2}}{\pi[a^2 + (1 - 2a)x^2]} \, dx, \quad |x| < 1,$$

is MRM-applicable for $h(x) = (1 - x)^{-1}$ with OP-generating function given by

$$\psi_a(t, x) = \frac{1 + (1 - 2a)t^2}{1 - 2tx + t^2}.$$

Remark (1) semi-circle: $a = \frac{1}{2}$. (2) arcsine: $a = 1$.
Question Are there other probab measures that are MRM-applicable for \(h(x) = (1 - x)^{-1} \)?

Theorem

(Kubo-Namli-K, IDAQP 2006) For \(0 < a \leq 1 \), the probab measure

\[
d\mu_a(x) = \frac{a\sqrt{1 - x^2}}{\pi \left[a^2 + (1 - 2a)x^2 \right]} \, dx, \quad |x| < 1,
\]

is MRM-applicable for \(h(x) = (1 - x)^{-1} \) with OP-generating function given by

\[
\psi_a(t, x) = \frac{1 + (1 - 2a)t^2}{1 - 2tx + t^2}.
\]

Remark (1) semi-circle: \(a = \frac{1}{2} \). (2) arcsine: \(a = 1 \).
Question Are there other probab measures that are MRM-applicable for $h(x) = (1 - x)^{-1}$?

Theorem

(Kubo-Namli-K, IDAQP 2006) For $0 < a \leq 1$, the probab measure

$$d\mu_a(x) = \frac{a\sqrt{1 - x^2}}{\pi [a^2 + (1 - 2a)x^2]} dx, \quad |x| < 1,$$

is MRM-applicable for $h(x) = (1 - x)^{-1}$ with OP-generating function given by

$$\psi_a(t, x) = \frac{1 + (1 - 2a)t^2}{1 - 2tx + t^2}.$$

Remark (1) semi-circle: $a = \frac{1}{2}$. (2) arcsine: $a = 1$.

Hui-Hsiung Kuo Recent results on MRM for orthogonal polynomials
The above theorem shows that there is a family \(\{ \mu_a; 0 < a \leq 1 \} \) of MRM-applicable probab measures for \(h(x) = (1 - x)^{-1} \). But are they all? It turns out that there are many more. But the computation is much much harder and more involved.

Lemma

Let \(\mu \) be MRM-applicable for \(h(x) = (1 - x)^{-1} \). Then \(\rho(t), \theta(\rho(t)), \) and \(\psi(t, x) \) must be given by

\[
\rho(t) = \frac{2t}{\alpha + 2\beta t + \gamma^2}, \quad \theta(\rho(t)) = \frac{1}{1 - (b + at)\rho(t)},
\]

\[
\psi(t, x) = \frac{\alpha + 2(\beta - b)t + (\gamma - 2a)t^2}{a - 2t(x - \beta) + \gamma t^2},
\]

where \(\alpha, \beta, \gamma, a, b \) are constants under some constraints.
The above theorem shows that there is a family \(\{ \mu_a; 0 < a \leq 1 \} \) of MRM-applicable probab measures for \(h(x) = (1 - x)^{-1} \). But are they all? It turns out that there are many more. But the computation is much much harder and more involved.

Lemma

Let \(\mu \) be MRM-applicable for \(h(x) = (1 - x)^{-1} \). Then \(\rho(t), \theta(\rho(t)), \) and \(\psi(t, x) \) must be given by

\[
\rho(t) = \frac{2t}{\alpha + 2\beta t + \gamma^2}, \quad \theta(\rho(t)) = \frac{1}{1 - (b + at)\rho(t)},
\]

\[
\psi(t, x) = \frac{\alpha + 2(\beta - b)t + (\gamma - 2a)t^2}{a - 2t(x - \beta) + \gamma t^2},
\]

where \(\alpha, \beta, \gamma, a, b \) are constants under some constraints.
Theorem

(Kubo-Namli-K, COSA 2007) For any $a > 0$ and $|b| \leq 1 - a$, the probability measure

$$d\mu_{a,b}(x) = \frac{a \sqrt{1 - x^2}}{\pi \left[a^2 + b^2 - 2b(1 - a)x + (1 - 2a)x^2 \right]} \, dx, \ |x| < 1,$$

is MRM-applicable for $h(x) = (1 - x)^{-1}$ with OP-generating function given by

$$\psi_{a,b}(t, x) = \frac{1 - 2bt + (1 - 2a)t^2}{1 - 2tx + t^2}.$$
Theorem

(Kubo-Namli-K, COSA 2007) *The class of all MRM-applicable probability measures for the function* \(h(x) = (1 - x)^{-1} \) *consists of translations and dilations of the probability measures of the form*

\[
d\mu(x) = W_0 \frac{\sqrt{1 - x^2}}{\pi (1 - px)(1 - qx)} 1_{(-1,1)}(x) \, dx + W_1 d\delta_{\frac{1}{p}}(x) + W_2 d\delta_{\frac{1}{q}}(x),
\]

where \(\delta_c \) *is the Dirac delta measure at* \(c \) *and* \(p, q, W_0, W_1, W_2 \) *are constants depending on two parameters* \(A > 0 \) *and* \(B \geq 0 \).
• **First Characterization problem for** \(h(x) = (1 - x)^{-1/2} \)

In the chart of classical distributions, the uniform distribution is MRM-applicable for the function \(h(x) = (1 - x)^{-1/2} \).

Are there other MRM-applicable probab measures for this function?

The computation for trying to find out the answer is rather complicated.

Ideas \(\varphi(t) := \theta(\rho(t)) \) satisfies the **Fundamental Equations**:

\[
\frac{\varphi'(t)}{\varphi(t)} = F_1(\rho(t), \rho'(t), t) = F_2(\rho(t), \rho'(t), t) = F_3(\rho(t), \rho'(t), t)
\]

which can be solved *(extremely complicated!)* to find possible forms of \(\rho(t) \). Then derive \(\varphi(t) \) and \(\theta(t) \), and finally \(\mu \).
• **First Characterization problem for** $h(x) = (1 - x)^{-1/2}$

In the chart of classical distributions, the uniform distribution is MRM-applicable for the function $h(x) = (1 - x)^{-1/2}$.

Are there other MRM-applicable probab measures for this function?

The computation for trying to find out the answer is rather complicated.

Ideas $\varphi(t) := \theta(\rho(t))$ satisfies the **Fundamental Equations:**

$$\frac{\varphi'(t)}{\varphi(t)} = F_1(\rho(t), \rho'(t), t) = F_2(\rho(t), \rho'(t), t) = F_3(\rho(t), \rho'(t), t)$$

which can be solved (extremely complicated!) to find possible forms of $\rho(t)$. Then derive $\varphi(t)$ and $\theta(t)$, and finally μ.
• **First Characterization problem** for \(h(x) = (1 - x)^{-1/2} \)

In the chart of classical distributions, the uniform distribution is MRM-applicable for the function \(h(x) = (1 - x)^{-1/2} \).

Are there other MRM-applicable probab measures for this function?

The computation for trying to find out the answer is rather complicated.

Ideas \(\varphi(t) := \theta(\rho(t)) \) satisfies the Fundamental Equations:

\[
\frac{\varphi'(t)}{\varphi(t)} = F_1(\rho(t), \rho'(t), t) = F_2(\rho(t), \rho'(t), t) = F_3(\rho(t), \rho'(t), t)
\]

which can be solved (extremely complicated!) to find possible forms of \(\rho(t) \). Then derive \(\varphi(t) \) and \(\theta(t) \), and finally \(\mu \).
First Characterization problem for $h(x) = (1 - x)^{-1/2}$

In the chart of classical distributions, the uniform distribution is MRM-applicable for the function $h(x) = (1 - x)^{-1/2}$.

Are there other MRM-applicable probab measures for this function?

The computation for trying to find out the answer is rather complicated.

Ideas $\varphi(t) := \theta(\rho(t))$ satisfies the Fundamental Equations:

$$\frac{\varphi'(t)}{\varphi(t)} = F_1(\rho(t), \rho'(t), t) = F_2(\rho(t), \rho'(t), t) = F_3(\rho(t), \rho'(t), t)$$

which can be solved (extremely complicated!) to find possible forms of $\rho(t)$. Then derive $\varphi(t)$ and $\theta(t)$, and finally μ.
• **First Characterization problem** for \(h(x) = (1 - x)^{-1/2} \)

In the chart of classical distributions, the uniform distribution is MRM-applicable for the function \(h(x) = (1 - x)^{-1/2} \).

Are there other MRM-applicable probab measures for this function?

The computation for trying to find out the answer is rather complicated.

Ideas \(\varphi(t) := \theta(\rho(t)) \) satisfies the Fundamental Equations:

\[
\frac{\varphi'(t)}{\varphi(t)} = F_1(\rho(t), \rho'(t), t) = F_2(\rho(t), \rho'(t), t) = F_3(\rho(t), \rho'(t), t)
\]

which can be solved (extremely complicated!) to find possible forms of \(\rho(t) \). Then derive \(\varphi(t) \) and \(\theta(t) \), and finally \(\mu \).
• First Characterization problem for $h(x) = (1 - x)^{-1/2}$

In the chart of classical distributions, the uniform distribution is MRM-applicable for the function $h(x) = (1 - x)^{-1/2}$. Are there other MRM-applicable probab measures for this function? The computation for trying to find out the answer is rather complicated.

Ideas $\varphi(t) := \theta(\rho(t))$ satisfies the Fundamental Equations:

$$\frac{\varphi'(t)}{\varphi(t)} = F_1(\rho(t), \rho'(t), t) = F_2(\rho(t), \rho'(t), t) = F_3(\rho(t), \rho'(t), t)$$

which can be solved (extremely complicated!) to find possible forms of $\rho(t)$. Then derive $\varphi(t)$ and $\theta(t)$, and finally μ.

Hui-Hsiung Kuo
Recent results on MRM for orthogonal polynomials
• First Characterization problem for $h(x) = (1 - x)^{-1/2}$

In the chart of classical distributions, the uniform distribution is MRM-applicable for the function $h(x) = (1 - x)^{-1/2}$. Are there other MRM-applicable probab measures for this function?

The computation for trying to find out the answer is rather complicated.

Ideas $\varphi(t) := \theta(\rho(t))$ satisfies the Fundamental Equations:

$$\frac{\varphi'(t)}{\varphi(t)} = F_1(\rho(t), \rho'(t), t) = F_2(\rho(t), \rho'(t), t) = F_3(\rho(t), \rho'(t), t)$$

which can be solved (extremely complicated!) to find possible forms of $\rho(t)$. Then derive $\varphi(t)$ and $\theta(t)$, and finally μ.
• First Characterization problem for $h(x) = (1 - x)^{-1/2}$

In the chart of classical distributions, the uniform distribution is MRM-applicable for the function $h(x) = (1 - x)^{-1/2}$.

Are there other MRM-applicable probab measures for this function?

The computation for trying to find out the answer is rather complicated.

Ideas $\varphi(t) := \theta(\rho(t))$ satisfies the Fundamental Equations:

$$\frac{\varphi'(t)}{\varphi(t)} = F_1(\rho(t), \rho'(t), t) = F_2(\rho(t), \rho'(t), t) = F_3(\rho(t), \rho'(t), t)$$

which can be solved (extremely complicated!) to find possible forms of $\rho(t)$. Then derive $\varphi(t)$ and $\theta(t)$, and finally μ.
Theorem

(Kubo-Namli-K, COSA 2008) A probab measure μ (with infinite support) is MRM-applicable for $h(x) = (1 - x)^{-1/2}$ if and only if it is a uniform probab measure on an interval.

Remark For the function $h(x) = (1 - x)^{-1}$, the corresponding class has a lot of probab measures.
But for the function $h(x) = (1 - x)^{-1/2}$, uniform distribution on $[-1, 1]$ is the only one (up to translation and dilation).
Theorem

(Kubo-Namli-K, COSA 2008) A probab measure μ (with infinite support) is MRM-applicable for $h(x) = (1 - x)^{-1/2}$ if and only if it is a uniform probab measure on an interval.

Remark For the function $h(x) = (1 - x)^{-1}$, the corresponding class has a lot of probab measures.

But for the function $h(x) = (1 - x)^{-1/2}$, uniform distribution on $[-1, 1]$ is the only one (up to translation and dilation).
Theorem

(Kubo-Namli-K, COSA 2008) A probab measure μ (with infinite support) is MRM-applicable for $h(x) = (1 - x)^{-1/2}$ if and only if it is a uniform probab measure on an interval.

Remark For the function $h(x) = (1 - x)^{-1}$, the corresponding class has a lot of probab measures. But for the function $h(x) = (1 - x)^{-1/2}$, uniform distribution on $[-1, 1]$ is the only one (up to translation and dilation).
• **First Characterization problem for** $h(x) = (1 - x)^{-2}$

Definition

The beta distribution on $[-1, 1]$ is defined by

$$d\mu(x) = \frac{1}{\beta_{a,b}} (1 + x)^{a-1} (1 - x)^{b-1} \, dx,$$

where $\beta_{a,b} = \int_{-1}^{1} (1 + x)^{a-1} (1 - x)^{b-1} \, dx$.

Follow the same ideas as those for the case $h(x) = (1 - x)^{-1/2}$, except the computation is now much much more complicated.

Theorem

(Kubo-Namli-K, 2009) The class of continuous MRM-applicable probab measures for $h(x) = (1 - x)^{-2}$ consists of translations and dilations of the $\beta(\frac{5}{2}, \frac{5}{2})$, $\beta(\frac{5}{2}, \frac{3}{2})$, and $\beta(\frac{3}{2}, \frac{3}{2})$ distributions.
• First Characterization problem for $h(x) = (1 - x)^{-2}$

Definition

The beta distribution on $[-1, 1]$ is defined by

$$d\mu(x) = \frac{1}{\beta_{a,b}} (1 + x)^{a-1} (1 - x)^{b-1} \, dx, \quad |x| < 1,$$

where $\beta_{a,b} = \int_{-1}^{1} (1 + x)^{a-1} (1 - x)^{b-1} \, dx$.

Follow the same ideas as those for the case $h(x) = (1 - x)^{-1/2}$, except the computation is now much much more complicated.

Theorem

(Kubo-Namli-K, 2009) The class of continuous MRM-applicable probab measures for $h(x) = (1 - x)^{-2}$ consists of translations and dilations of the $\beta(\frac{5}{2}, \frac{5}{2}), \beta(\frac{5}{2}, \frac{3}{2}),$ and $\beta(\frac{3}{2}, \frac{3}{2})$ distributions.
First Characterization problem for $h(x) = (1 - x)^{-2}$

Definition

The beta distribution on $[-1, 1]$ is defined by

$$d \mu(x) = \frac{1}{\beta_{a,b}} (1 + x)^{a-1}(1 - x)^{b-1} \, dx, \quad |x| < 1,$$

where $\beta_{a,b} = \int_{-1}^{1} (1 + x)^{a-1}(1 - x)^{b-1} \, dx$.

Follow the same ideas as those for the case $h(x) = (1 - x)^{-1/2}$, except the computation is now much much more complicated.

Theorem

(Kubo-Namli-K, 2009) The class of continuous MRM-applicable probab measures for $h(x) = (1 - x)^{-2}$ consists of translations and dilations of the $\beta\left(\frac{5}{2}, \frac{5}{2}\right)$, $\beta\left(\frac{5}{2}, \frac{3}{2}\right)$, and $\beta\left(\frac{3}{2}, \frac{3}{2}\right)$ distributions.
• **First Characterization problem** for \(h(x) = (1 - x)^{-2} \)

Definition

The **beta distribution** on \([-1, 1]\) is defined by

\[
d\mu(x) = \frac{1}{\beta_{a,b}} (1 + x)^{a-1} (1 - x)^{b-1} \, dx, \quad |x| < 1,
\]

where \(\beta_{a,b} = \int_{-1}^{1} (1 + x)^{a-1} (1 - x)^{b-1} \, dx \).

Follow the same ideas as those for the case \(h(x) = (1 - x)^{-1/2} \), except the computation is now much much more complicated.

Theorem

(Kubo-Namli-K, 2009) *The class of continuous MRM-applicable probab measures for* \(h(x) = (1 - x)^{-2} \) *consists of translations and dilations of the* \(\beta\left(\frac{5}{2}, \frac{5}{2}\right) \), \(\beta\left(\frac{5}{2}, \frac{3}{2}\right) \), and \(\beta\left(\frac{3}{2}, \frac{3}{2}\right) \) *distributions.*
• **First Characterization problem** for \(h(x) = (1 - x)^{-\kappa} \)

\(\kappa \neq 0, 1, \frac{1}{2} \)

Follow the same ideas as those for the case \(h(x) = (1 - x)^{-2} \), except that the computation is now extremely complicated.

Theorem

(Kubo-Namli-K, 2009) Let \(|\kappa| < \frac{1}{2}, \kappa \neq 0 \). Then the class of continuous MRM-applicable probab measures for \(h(x) = (1 - x)^{-\kappa} \) consists of translations and dilations of the \(\beta(\kappa + \frac{1}{2}, \kappa + \frac{1}{2}) \) distribution.

Theorem

(Kubo-Namli-K, 2009) Let \(\kappa > \frac{1}{2}, \kappa \neq 1 \). Then the class of continuous MRM-applicable probab measures for \(h(x) = (1 - x)^{-\kappa} \) consists of translations and dilations of the \(\beta(\kappa + \frac{1}{2}, \kappa + \frac{1}{2}), \beta(\kappa + \frac{1}{2}, \kappa - \frac{1}{2}), \text{ and } \beta(\kappa - \frac{1}{2}, \kappa - \frac{1}{2}) \) distributions.
First Characterization problem for \(h(x) = (1 - x)^{-\kappa} \)
\((\kappa \neq 0, 1, \frac{1}{2})\)

Follow the same ideas as those for the case \(h(x) = (1 - x)^{-2} \), except that the computation is now extremely complicated.

Theorem

(Kubo-Namli-K, 2009) Let \(|\kappa| < \frac{1}{2}, \kappa \neq 0\). Then the class of continuous MRM-applicable probab measures for \(h(x) = (1 - x)^{-\kappa} \) consists of translations and dilations of the \(\beta(\kappa + \frac{1}{2}, \kappa + \frac{1}{2}) \) distribution.

Theorem

(Kubo-Namli-K, 2009) Let \(\kappa > \frac{1}{2}, \kappa \neq 1 \). Then the class of continuous MRM-applicable probab measures for \(h(x) = (1 - x)^{-\kappa} \) consists of translations and dilations of the \(\beta(\kappa + \frac{1}{2}, \kappa + \frac{1}{2}), \beta(\kappa + \frac{1}{2}, \kappa - \frac{1}{2}), \) and \(\beta(\kappa - \frac{1}{2}, \kappa - \frac{1}{2}) \) distributions.
First Characterization problem for \(h(x) = (1 - x)^{-\kappa} \)
\((\kappa \neq 0, 1, \frac{1}{2})\)

Follow the same ideas as those for the case \(h(x) = (1 - x)^{-2} \), except that the computation is now extremely complicated.

Theorem

(Kubo-Namli-K, 2009) Let \(|\kappa| < \frac{1}{2}, \kappa \neq 0 \). Then the class of continuous MRM-applicable probab measures for \(h(x) = (1 - x)^{-\kappa} \) consists of translations and dilations of the \(\beta(\kappa + \frac{1}{2}, \kappa + \frac{1}{2}) \) distribution.

Theorem

(Kubo-Namli-K, 2009) Let \(\kappa > \frac{1}{2}, \kappa \neq 1 \). Then the class of continuous MRM-applicable probab measures for \(h(x) = (1 - x)^{-\kappa} \) consists of translations and dilations of the \(\beta(\kappa + \frac{1}{2}, \kappa + \frac{1}{2}) \), \(\beta(\kappa + \frac{1}{2}, \kappa - \frac{1}{2}) \), and \(\beta(\kappa - \frac{1}{2}, \kappa - \frac{1}{2}) \) distributions.
First Characterization problem for \(h(x) = (1 - x)^{-\kappa} \)
\((\kappa \neq 0, 1, \frac{1}{2})\)

Follow the same ideas as those for the case \(h(x) = (1 - x)^{-2} \), except that the computation is now extremely complicated.

Theorem

(Kubo-Namli-K, 2009) Let \(|\kappa| < \frac{1}{2}, \kappa \neq 0\). Then the class of continuous MRM-applicable probab measures for \(h(x) = (1 - x)^{-\kappa} \) consists of translations and dilations of the \(\beta(\kappa + \frac{1}{2}, \kappa + \frac{1}{2}) \) distribution.

Theorem

(Kubo-Namli-K, 2009) Let \(\kappa > \frac{1}{2}, \kappa \neq 1 \). Then the class of continuous MRM-applicable probab measures for \(h(x) = (1 - x)^{-\kappa} \) consists of translations and dilations of the \(\beta(\kappa + \frac{1}{2}, \kappa + \frac{1}{2}), \beta(\kappa + \frac{1}{2}, \kappa - \frac{1}{2}), \text{ and } \beta(\kappa - \frac{1}{2}, \kappa - \frac{1}{2}) \) distributions.
Outline

1. Introduction
 - Orthogonal polynomials
 - An example (key idea)
 - Another example (key idea)

2. Multiplicative Renormalization Method
 - OP-generating function
 - MRM procedure
 - Classical distributions

3. Characterization Theorems
 - Characterization problems
 - MRM-applicable measures
 - MRM-factors

4. References

Hui-Hsiung Kuo
Recent results on MRM for orthogonal polynomials
Now, we address the **second characterization problem**, i.e., given an MRM-applicable probab measure μ, find all MRM-factors for μ.

Notation \((a)_n = a(a+1) \cdots (a+n-1), \ (a)_0 = 1\), rising factorial

Definition

A hypergeometric function is a function of the form

$$pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{1}{n!} x^n$$

Notation \(_0F_q(-; b_1, \ldots, b_q; x), \ pF_0(a_1, \ldots, a_p; -; x)\)

Examples

\(_0F_0(-; -; x) = e^x\)

\(_1F_0(\kappa; -; x) = (1 - x)^{-\kappa}\)

\(_1F_1(1; 2; x) = \frac{e^x - 1}{x}\)
Now, we address the second characterization problem, i.e., given an MRM-applicable probab measure μ, find all MRM-factors for μ.

Notation $(a)_n = a(a+1) \cdots (a+n-1)$, $(a)_0 = 1$, rising factorial

Definition

A hypergeometric function is a function of the form

$$pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{1}{n!} x^n$$

Notation $0F_q(-; b_1, \ldots, b_q; x)$, $pF_0(a_1, \ldots, a_p; -; x)$

Examples

$$0F_0(-; -; x) = e^x$$
$$1F_0(\kappa; -; x) = (1 - x)^{-\kappa}$$
$$1F_1(1; 2; x) = \frac{e^x - 1}{x}$$
Now, we address the second characterization problem, i.e., given an MRM-applicable probab measure μ, find all MRM-factors for μ.

Notation $(a)_n = a(a+1) \cdots (a+n-1)$, $(a)_0 = 1$, rising factorial

Definition

A hypergeometric function is a function of the form

$$pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{1}{n!} x^n$$

Notation $0F_q(-; b_1, \ldots, b_q; x)$, $pF_0(a_1, \ldots, a_p; -; x)$

Examples

$$0F_0(-; -; x) = e^x$$
$$1F_0(\kappa; -; x) = (1 - x)^{-\kappa}$$
$$1F_1(1; 2; x) = \frac{e^x - 1}{x}$$
Now, we address the second characterization problem, i.e., given an MRM-applicable probab measure μ, find all MRM-factors for μ.

Notation

$(a)_n = a(a+1) \cdots (a+n-1)$, $(a)_0 = 1$, rising factorial

Definition

A hypergeometric function is a function of the form

$$pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{1}{n!} x^n$$

Notation

$0F_q(-; b_1, \ldots, b_q; x)$, $pF_0(a_1, \ldots, a_p; -; x)$

Examples

$0F_0(-; -; x) = e^x$

$1F_0(\kappa; -; x) = (1 - x)^{-\kappa}$

$1F_1(1; 2; x) = \frac{e^x - 1}{x}$
Now, we address the **second characterization problem**, i.e.,
given an MRM-applicable probab measure \(\mu \), find all MRM-factors for \(\mu \).

Notation \((a)_n = a(a+1) \cdots (a+n-1), \,(a)_0 = 1\), rising factorial

Definition

A hypergeometric function is a function of the form

\[
pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n} \frac{1}{n!} x^n
\]

Notation \(0F_q(-; b_1, \ldots, b_q; x), \, pF_0(a_1, \ldots, a_p; -; x)\)

Examples

\[
0F_0(-; -; x) = e^x
\]

\[
1F_0(\kappa; -; x) = (1 - x)^{-\kappa}
\]

\[
1F_1(1; 2; x) = \frac{e^x - 1}{x}
\]
Theorem

(Kubo-K, 2010) All MRM-factors for the standard Gaussian distribution are given, up to scaling, by the functions:

\[h(x) = e^x \quad \text{and} \quad \tilde{h}(x) = \binom{1}{2} F_1 \left(\frac{c}{2}; \frac{1}{2}; -x^2 \right) + \binom{c + 1}{2} F_1 \left(\frac{c + 1}{2}; \frac{3}{2}; -x^2 \right) x \]

where \(c \neq 0, -1, -2, -3, \ldots \)

Theorem

(Kubo-K, 2010) All MRM-factors for the gamma distribution \(\Gamma(\alpha) \) are given, up to scaling, by the functions:

\[h(x) = \binom{0}{\alpha} F_1 (-; \alpha; x) \quad \text{and} \quad \tilde{h}(x) = \binom{1}{\alpha} F_1 (c; \alpha; x) \]

where \(c \neq 0, -1, -2, -3, \ldots \)
Theorem

(Kubo-K, 2010) All MRM-factors for the standard Gaussian distribution are given, up to scaling, by the functions:

\[h(x) = e^x \quad \text{and} \quad \tilde{h}(x) = \, _1F_1\left(\frac{c}{2}; \frac{1}{2}; -x^2\right) + \, _1F_1\left(\frac{c + 1}{2}; \frac{3}{2}; -x^2\right) x \]

where \(c \neq 0, -1, -2, -3, \ldots \)

Theorem

(Kubo-K, 2010) All MRM-factors for the gamma distribution \(\Gamma(\alpha) \) are given, up to scaling, by the functions:

\[h(x) = \, _0F_1(-; \alpha; x) \quad \text{and} \quad \tilde{h}(x) = \, _1F_1(c; \alpha; x) \]

where \(c \neq 0, -1, -2, -3, \ldots \)
Theorem

(Kubo-K, 2010) All MRM-factors for the standard Gaussian distribution are given, up to scaling, by the functions:

\[h(x) = e^x \quad \text{and} \quad \tilde{h}(x) = {}_1 F_1 \left(\frac{c}{2}; \frac{1}{2}; -x^2 \right) + {}_1 F_1 \left(\frac{c + 1}{2}; \frac{3}{2}; -x^2 \right) x \]

where \(c \neq 0, -1, -2, -3, \ldots \)

Theorem

(Kubo-K, 2010) All MRM-factors for the gamma distribution \(\Gamma(\alpha) \) are given, up to scaling, by the functions:

\[h(x) = {}_0 F_1 (-; \alpha; x) \quad \text{and} \quad \tilde{h}(x) = {}_1 F_1 (c; \alpha; x) \]

where \(c \neq 0, -1, -2, -3, \ldots \)
Theorem

(Kubo-K, 2010) All MRM-factors for the standard Gaussian distribution are given, up to scaling, by the functions:

\[h(x) = e^x \quad \text{and} \quad \tilde{h}(x) = \, _1 F_1 \left(\frac{c}{2}; \frac{1}{2}; -x^2 \right) + \, _1 F_1 \left(\frac{c + 1}{2}; \frac{3}{2}; -x^2 \right) x \]

where \(c \neq 0, -1, -2, -3, \ldots \)

Theorem

(Kubo-K, 2010) All MRM-factors for the gamma distribution \(\Gamma(\alpha) \) are given, up to scaling, by the functions:

\[h(x) = \, _0 F_1 (-; \alpha; x) \quad \text{and} \quad \tilde{h}(x) = \, _1 F_1 (c; \alpha; x) \]

where \(c \neq 0, -1, -2, -3, \ldots \)
Theorem

(Kubo-K, 2010) *MRM-factor for shifted Poisson distribution* \(\text{Poi}(\lambda) \) *is uniquely, up to scaling, given by* \(h(x) = e^x \).

Theorem

(Kubo-K, 2010) *MRM-factor for Pascal distribution is uniquely, up to scaling, given by* \(h(x) = e^x \).

Theorem

(Kubo-K, 2010) *All MRM-factors for Meixner distribution* \(M_{\kappa, \eta} \) *are given by*

- \(\kappa > 0, \kappa \neq 2 \): \(h(x) = e^x \)
- \(\kappa = 2 \): \(h(x) = e^x \) and \(\tilde{h}(x) = \frac{e^x - 1}{x} \)
Theorem

(Kubo-K, 2010) **MRM-factor for shifted Poisson distribution**

\(\text{Poi}(\lambda) \) is uniquely, up to scaling, given by \(h(x) = e^x \).

Theorem

(Kubo-K, 2010) **MRM-factor for Pascal distribution is uniquely, up to scaling, given by**

\(h(x) = e^x \).

Theorem

(Kubo-K, 2010) **All MRM-factors for Meixner distribution** \(M_{\kappa, \eta} \) **are given by**

- \(\kappa > 0, \kappa \neq 2: h(x) = e^x \)
- \(\kappa = 2: h(x) = e^x \) and \(\tilde{h}(x) = \frac{e^x - 1}{x} \)
Theorem

(Kubo-K, 2010) **MRM-factor for shifted Poisson distribution**

\(\text{Poi}(\lambda) \) is uniquely, up to scaling, given by \(h(x) = e^x \).

Theorem

(Kubo-K, 2010) **MRM-factor for Pascal distribution** is uniquely, up to scaling, given by \(h(x) = e^x \).

Theorem

(Kubo-K, 2010) **All MRM-factors for Meixner distribution** \(M_{\kappa, \eta} \) are given by

- \(\kappa > 0, \kappa \neq 2 \): \(h(x) = e^x \)
- \(\kappa = 2 \): \(h(x) = e^x \) and \(\tilde{h}(x) = \frac{e^x - 1}{x} \)
Theorem

(Kubo-K, 2010) **MRM-factor for shifted Poisson distribution**

\[\text{Poi}(\lambda) \text{ is uniquely, up to scaling, given by } h(x) = e^x. \]

Theorem

(Kubo-K, 2010) **MRM-factor for Pascal distribution**

is uniquely, up to scaling, given by \(h(x) = e^x \).

Theorem

(Kubo-K, 2010) **All MRM-factors for Meixner distribution** \(M_{\kappa, \eta} \)

are given by

- \(\kappa > 0, \kappa \neq 2 \): \(h(x) = e^x \)
- \(\kappa = 2 \): \(h(x) = e^x \) and \(\tilde{h}(x) = \frac{e^x - 1}{x} \)
Kubo: (Exponential function) IDAQP (2004)
Kubo-Kuo-Namli: (general Chebychev polys) IDAQP (2006)
Kubo-Kuo-Namli: (power of order 1) COSA (2007)
Kubo-Kuo-Namli: (MRM-factors) COSA (2008)

Kubo-Kuo: (MRM-appl and MRM-factors) COSA (2009)

Kubo: (Jacobi polynomials) COSA (2009)

Kubo-Kuo: (MRM-factors for Meixner) IDAQP (to appear)

Kubo-Kuo-Namli: (power of order 2) Preprint (2009)

Kubo-Kuo-Namli: (power of general order) Preprint (2009)