Duality of holomorphic function spaces and smoothing properties of the Bergman projection

Anne-Katrin Herbig¹, Jeffery D. McNeal ², and Emil J. Straube³

July 9 - 13, 2012

1. Department of Mathematics, University of Vienna,
 Vienna, Austria
 E-mail: anne-katrin.herbig@univie.ac.at

2. Department of Mathematics, Ohio State University,
 Columbus, Ohio, USA
 E-mail: mcneal@math.ohio-state.edu

3. Department of Mathematics, Texas A&M University,
 College Station, Texas, USA
 E-mail: straube@math.tamu.edu

Abstract

Let $\Omega \subset \subset \mathbb{C}^n$ be a domain with smooth boundary, whose Bergman projection B maps the Sobolev space $H^{k_1}(\Omega)$ (continuously) into $H^{k_2}(\Omega)$. We establish two smoothing results: (i) the full Sobolev norm $\|Bf\|_{k_2}$ is controlled by L^2 derivatives of f taken along a single, distinguished direction (of order $\leq k_1$), and (ii) the projection of a conjugate holomorphic function in $L^2(\Omega)$ is automatically in $H^{k_2}(\Omega)$. There are obvious corollaries for when B is globally regular.