Boltzmann Equation and Hydrodynamics beyond Navier-Stokes

Alexander Bobylev

Keldysh Institute for Applied Mathematics, RAS, Moscow
Chapman-Enskog method and Burnett equations

Notation:

\(f(x, v, t) \) - distribution function (\(x \in \mathbb{R}^3, \ v \in \mathbb{R}^3, \ t \geq 0 \))

Boltzmann equation:

\[
\mathcal{D}f = \frac{1}{\varepsilon} Q(f, f), \quad \mathcal{D} = \partial_t + v \cdot \partial_x,
\]

\(\varepsilon \) - Knudsen number, \(\varepsilon \to 0^+ \)

Macroscopic variables: (in the notation \(\langle f, g \rangle = \int_{\mathbb{R}^3} dv f(v) g(v) \))

- density \(\rho = \langle f, 1 \rangle \in \mathbb{R}_+ \)
- bulk velocity \(u = \frac{1}{\rho} \langle f, v \rangle \in \mathbb{R}^3 \)
- temperature \(T = \frac{1}{3\rho} \langle f, |c|^2 \rangle \in \mathbb{R}_+, \ c = v - u \) (thermal velocity)
Equations of hydrodynamics
(based on: $\langle \Psi, Q(f, f) \rangle = 0$ if $\Psi = 1, v, |v|^2$)

\[
\begin{cases}
\rho_t + div \rho u = 0 \\
\rho D_0 u_\alpha + \frac{\partial p}{\partial x_\alpha} + \varepsilon \frac{\partial \pi_{\alpha\beta}}{\partial x_\beta} = 0 \\
\frac{3}{2} \rho D_0 T + p div u + \varepsilon \left(\pi_{\alpha\beta} \frac{\partial u_\alpha}{\partial x_\beta} + div q \right) = 0
\end{cases}
\]

where

$D_0 = \partial_t + u \cdot \partial_x$, $p = \rho T$ (pressure)

Fluxes:

$\varepsilon \pi_{\alpha\beta} = \langle f, c_\alpha c_\beta - \frac{|c|^2}{3} \delta_{\alpha\beta} \rangle$, $c = v - u,$

$\varepsilon q_\alpha = \frac{1}{2} \langle f, c_\alpha |c|^2 \rangle$, $\alpha, \beta = 1, 2, 3$

Main problem:

How to express fluxes $\pi(f)$ and $q(f)$ in terms of macroscopic variables (ρ, u, T)?
Chapman-Enskog Expansion

We use the famous Chapman-Enskog expansion

(Hilbert 1912, Enskog 1917, Chapman 1917, Burnett 1935, Chapman & Cowling 1939)

and obtain “Equations of hydrodynamics” in symbolic form

\[
\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ u \\ T \end{pmatrix} = \left(A_0^E + \varepsilon A_1^{N-S} + \varepsilon^2 A_2^B + \ldots \right) \begin{pmatrix} \rho \\ u \\ T \end{pmatrix},
\]

where all \(A_k \), \(k = 0, 1, \ldots \) are nonlinear operators
Chapman-Enskog Expansion

\[
\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ u \\ T \end{pmatrix} = \left(A_0^E + \varepsilon A_1^{N-S} + \varepsilon^2 A_2^B + \ldots \right) \begin{pmatrix} \rho \\ u \\ T \end{pmatrix},
\]

Truncation problem

The standard truncation rule

"Neglect all terms of order \(O(\varepsilon^{n+1}) \)"

does not work for \(n=2 \): Burnett equations are ill-posed.

What shall we do?

Is the way of truncation unique?
Take an abstract evolution equation (or simply a vector ODE)

\[
\frac{dy}{dt} = T(y; \varepsilon) = A(y) + \varepsilon B(y) + \varepsilon^2 C(y) + ..., \\
y \in Y; \ A(y), B(y), ... \text{ are differentiable non-linear operators:}
\]

1. Let the “natural” truncation

\[
Y_t = A(y) + \varepsilon B(y) + \varepsilon^2 C(y) + O(\varepsilon^3)
\]

does not work. What then?

2. Use the “change of variables” (all operators are time-independent):

\[
z = y + \varepsilon^2 R(y)
\]

Then \(y \simeq z - \varepsilon^2 R(z) \) and simple calculation yields

\[
Z_t = A(z) + \varepsilon B(z) + \varepsilon^2 \{ C(z) + [R, A](z) \} + O(\varepsilon^3),
\]

where \([R, A](z) = R'(z)A(z) - A'(z)R(z)\).
Proposition Any truncated equation

\[y_t = A(y) + \varepsilon B(y) + \varepsilon^2 C(y) + ... \]

(2)

is formally equivalent to a family of equations

\[z_t = A(z) + \varepsilon B(z) + \varepsilon^2 \tilde{C}(z) + ... , \]

(3)

where

\[z = y + \varepsilon^2 R(y) \iff y = z - \varepsilon^2 R(z) + ... , \]

and

\[\tilde{C}(z) = C(z) + R'(z)A(z) - A'(z)R(z) \]

with any differentiable operator \(R \).

Remark: Note that even classical Navier-Stokes Eqs. are not defined uniquely (only Euler Eqs. are unique).

Remaining problem: Find the operator \(R(z) \) that makes Eqs. (3) “good”.
Hierarchy of problems (with increasing difficulty)

Main goal is to understand how to improve the Navier-Stokes results

Separate question: stationary BE
EXAMPLE Linearized Burnett equations for 1d solutions

\[x \in \mathbb{R}, \quad \rho = \rho(x,t), \quad T = T(x,t), \quad u = (u(x,t), 0, 0) \]

Hydrodynaminc vector:

\[z = \begin{pmatrix} \rho \\ u \\ T \end{pmatrix} \in \mathbb{R}^3 \]

Linearized Burnett equations:

\[z_t + M_0 z_x = \varepsilon M_1 z_{xx} + \varepsilon^2 M_2 z_{xxx} \]

Euler Navier–Stokes Burnett

\[M_0 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 2/3 & 0 \end{pmatrix}, \quad M_{1,2} = \ldots \]

Comment Equations are ill-posed, but we do not need to solve them. Instead we transform the variables.
Proposition A transformation

\[y = R_0 z + \varepsilon R_1 z_x + \varepsilon^2 R_2 z_{xx} \]

leads (formally) to “diagonal” Burnett equations

\[y_t + c_0 \Lambda_0 (y_x + \alpha \varepsilon^2 y_{xxx}) = \beta \varepsilon \Lambda_1 y_{xx} + O(\varepsilon^3), \]

\[c_0 = \sqrt{5/3}, \quad \Lambda_0 = diag(1, -1, 0), \quad \Lambda_1 = diag(1, 1, \gamma), \]

with some positive numbers \(\alpha, \beta, \gamma \)

Comment LBEs for general 3d flows can be also reduced to diagonal form by using the Fourier transform
Sketch of proof (in \mathbb{R})

- **Step 1** Fourier transform

\[
\hat{\rho}(k,t) = \mathcal{F}(\rho) = \int_{-\infty}^{\infty} dx \, e^{-ikx} \rho(x,t),
\]
\[
\hat{u} = \mathcal{F}(u), \quad \hat{T} = \mathcal{F}(T).
\]

Then
\[
\hat{z} = \begin{pmatrix} \hat{\rho} \\ \hat{u} \\ \hat{T} \end{pmatrix}
\]

and we obtain ODEs
\[
\dot{\hat{z}}_t + ikM_0 \hat{z} = -\varepsilon k^2 M_1 \hat{z} + \varepsilon^2 (ik)^3 M_2 \hat{z}
\]

Note that M_0 has three distinct eigenvalues
\[
\lambda_0 = 0, \quad \lambda_\pm = \pm \sqrt{5/3} = \pm c_0.
\]
Step 2 Diagonalization of M_0

New variables $s = \hat{\rho} - \frac{3}{2} \hat{T}$, $w_\pm = \hat{\rho} + \hat{T} \pm c_0 \hat{u}$

Then $w = \begin{pmatrix} w_+ \\ w_- \\ s \end{pmatrix}$ and we obtain

$$w_t + i k c_0 \Lambda_0 w = -\varepsilon k^2 \overline{M}_1 w + \varepsilon^3 (ik)^3 \overline{M}_2 w,$$

where $\Lambda_0 = \text{diag}(1, -1, 0)$
Step 3 Follows from

Lemma

If \(w_t + \Lambda w = \varepsilon A w, \ w \in \mathbb{R}^n, \ \Lambda = \text{diag}(\lambda_1, ..., \lambda_n), \ \lambda_i \neq \lambda_j \) for \(i \neq j \),

then there is a unique matrix \(B \) such that

(a) \(\text{diag } B = 0 \) and (b) the substitution \(w = y + \varepsilon B y \)

leads to equation

\[y_t + \Lambda y = \varepsilon (\text{diag } A) y + O(\varepsilon^2). \]

Proof

\[y = \left(1 + \varepsilon B\right)^{-1} w \] and therefore

\[y_t + \Lambda y = \varepsilon \left(A + [B, \Lambda]\right)y + O\left(\varepsilon^2\right). \]

Let \(A = \{a_{ij}\}, \ B = \{b_{ij}\} \), then \([B, \Lambda]_{ij} = (B\Lambda - \Lambda B)_{ij} = b_{ij} (\lambda_j - \lambda_i) \).

Hence \(B = \begin{cases} b_{ij} = \frac{a_{ij}}{\lambda_i - \lambda_j}, \ i \neq j; \ b_{ii} = 0 \end{cases} \) completes the proof.
Structure of Chapman-Enskog expansion for linearized Boltzmann equation

Linearization of BE :\[f = m + g \sqrt{m}, \quad m = \left(2\pi\right)^{-3/2} e^{-|v|^2/2} \]

\[g(x,v,t) : \]
\[g_t + v \cdot g_x = \frac{1}{\varepsilon} Lg, \quad g\big|_{t=0} = g_0; \quad x \in \mathbb{R}^3, v \in \mathbb{R}^3; \]
\[\langle g_1, g_2 \rangle = \int_{\mathbb{R}^3} dv \ g_1^*(v) g_2(v), \quad \|g\|^2 = \langle g, g \rangle, \quad \int_{\mathbb{R}^3} dx \|g_0\|^2 < \infty. \]

Fourier transform:
\[\hat{g}(k,v,t) = \int_{\mathbb{R}^3} dx \ e^{-ik \cdot x} g(...), \quad \hat{g}_t + ik \cdot \hat{v} \hat{g} = \frac{1}{\varepsilon} L\hat{g}, \quad \hat{g}\big|_{t=0} = \hat{g}_0, \quad k \in \mathbb{R}^3. \]
Null-space of L: \[N(L) = \left\{ g \in L^2(\mathbb{R}^3), \ Lg = 0 \right\} \]
\[N = \text{Span}\left\{ \sqrt{m}, \ v \sqrt{m}, \ |v|^2 \sqrt{m} \right\}, \ \text{dim} \ N = 5. \]

Basis in $N(L)$: \[\left\{ e_i \left(v, \frac{k}{|k|} \right), \ i = 1, \ldots, 5 \right\} \] such that \[\langle e_i, e_j \rangle = \delta_{ij}, \]
\[\langle (k \cdot v) e_i, e_j \rangle = \sqrt{\frac{5}{3}} |k| \gamma_i \delta_{ij}, \quad \gamma_1 = -\gamma_2 = 1, \quad \gamma_3 = \gamma_4 = \gamma_5 = 0. \]

Hydrodynamic vector: \[w = \begin{pmatrix} w_1 \\ \vdots \\ w_5 \end{pmatrix}, \quad w_i = \langle e_i, g(k,v,t) \rangle, \]
\[g(k,v,t) = \exp \left[\frac{t}{\varepsilon} A \left(i\varepsilon |k|, \frac{k}{|k|} \right) \right] g_0(k,v), \quad \text{where} \]
\[A(\mu,\omega) = L - \mu(\omega \cdot v), \quad \mu \in \mathbb{C}, \quad \omega \in S^2. \]
Lemma (Arsen’ev, 1965).

For hard spheres with diameter \(d = \pi^{-1/2} \) there is a number \(r_0 > 0 \) such that the eigenvalue problem

\[
\lambda g = A(\mu, \omega) g, \quad |\mu| \leq r_0,
\]

has exactly 5 linearly independent solutions \(\{\lambda_j, g_j; \ j = 1, \ldots, 5\} \) having the following form:

\[
\lambda_j = \lambda_j(\mu) = \sum_{n=1}^{\infty} \mu^n \lambda_n^{(j)},
\]

\[
g_j(v; \mu, \omega) = e_j(v; \omega) + \sum_{n=1}^{\infty} \mu^n g_n^{(j)}(v; \omega), \quad \left\langle e_j, g_n^{(j)} \right\rangle = 0.
\]
Connection with Chapman-Enskog expansion

Chapman-Enskog method leads to equation

\[w(k,t) : \ w_t = Uw = \left(\sum_{n=0}^{\infty} \varepsilon^n U_n \right)w, \]

where

\[U_0 = \sqrt{\frac{5}{3}} |k| \text{diag}(1,-1,0,0,0), \quad U_1 = -|k|^2 U^{N-S}, \quad U_2 = (i|k|^3 U^B, ... \]

What can be said about the structure of \(U \) ?
Connection with Chapman-Enskog expansion

Proposition

\[U = B\Lambda B^{-1}, \quad \text{where} \quad \Lambda = \frac{1}{\varepsilon} \text{diag}\{\lambda_1(i\varepsilon|k|),...\lambda_5(i\varepsilon|k|)\}, \]

\[B = \{b_{ij}; i, j = 1,...,5\}, \quad b_{ij} = \left\langle e_i, g_j \left(i\varepsilon|k|, \frac{k}{|k|} \right) \right\rangle. \]

Obviously the series

\[\lambda_j = \sum_{j=1}^{\infty} \lambda_n^{(j)}(i\varepsilon|k|)^n, \quad b_{ij} = \delta_{ij} + \sum_{n=1}^{\infty} b_n^{(ij)}(i\varepsilon|k|)^n; \quad i, j = 1,...,5; \]

converge for such \(k \in \mathbb{R}^3 \) that \(|k| \leq \frac{r_0}{\varepsilon}. \)
Asymptotic expansion of solutions

Chapman - Enskog equations of hydrodynamics:

\[w_t = B \Lambda B^{-1} \, w, \quad w \big|_{t=0} = w_0^{(as)}, \]

where \(B(\varepsilon), \Lambda(\varepsilon), w_0^{(as)} \) are analytic at \(\varepsilon = 0 \).

"Diagonal" equations:

\[w = B y \quad \Rightarrow \quad y_t = \Lambda y, \quad y \big|_{t=0} = y_0 = B^{-1} w_0^{(as)} \]

(the connection with "changes of variables" is obvious).

Then

\[w(t) = B \, e^{\Lambda t} \, y_0 \]

and we can use two independent truncations:
\[w_{nl}(t) = B^{(l)} e^{\Lambda^{(n)} t} y_0^{(l)}, \quad n \geq 0, \ l \geq 0, \] where

\[B = B^{(l)} + O(\varepsilon^{l+1}), \quad y_0 = y_0^{(l)} + O(\varepsilon^{l+1}), \quad \Lambda = \Lambda^{(n)} + O(\varepsilon^{n+1}). \]

Final estimates (for \(n = 0, 1, 2 \)):

\[\mathcal{F}^{-1}_{k \rightarrow x} \left[w(k, t) - w_{ne}(k, t) \right] = O(\varepsilon^n) + O(\varepsilon^{l+1}) \]

uniformly in time.

Note that
\[n=1 \] for Navier-Stokes and \[n=2 \] for Burnett equations.
Conclusions

1
We began with the problem regularization of classical Burnett equations and show that this can be done by \textit{transformation to new hydrodynamic variables}.

It was also shown that the way of truncation of the Chapman-Enskog expansion is \textit{not unique} (even at the Navier-Stokes level).
What is the meaning of these transformations? How to find the optimal one? Does it exist?

These questions were considered in detail for the linearized Boltzmann equation.

It was shown that the Chapman-Enskog expansion has a special structure which allows to pass to "diagonal" equations of hydrodynamics (5 independent equations). This is the meaning of the optimal transformation in the linear case.
The "diagonal" Navier-Stokes equations are:
three heat equations for two viscous and
one thermal modes respectively.

Plus two linearized Burgers equations for two sound
modes.

The corresponding solutions are valid with error
$O(\varepsilon)$ uniformly in time.
The "diagonal" Burnett equations are: the same three heat equations plus two linearized Burgers-KdV equations for sound modes.

The uniform in time error is quadratic in ϵ in this case provided that the diagonalizing transformation and the asymptotic initial data are also computed with quadratic error.
THANK YOU!......