Ky Fan Lecture
主講者: Yoichi Miyaoka(The University of Tokyo)
講題: On the canonical degree of curves on a surface
時間: 2012-11-22 (Thu.)  16:15 - 17:15
地點:
Abstract: A conjecture of Lang predicts that a variety of general type $X$ contains a proper closed algebraic subset $Z$ such that all the rational curves and elliptic curves on $X$ are necessarily contained in $Z$. Though Kodaira proved a weaker result to the effect that the union of all the rational/elliptic curves on $X$ has Lebesgue measure zero, the conjecture is still wide open, even in the case where $X$ is a surface. We discuss this problem and prove that, if $X$ satisfies a certain topological condition, we can effectively bound the number of rational/elliptic curves on $X$.
  || Close window ||