Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2005 / June Volume 32 No.2
On the recursive sequence $x_{n+1}=\frac{\alpha_{1} x_n+\cdots+\alpha_{k} x_{n-k+1}}{A+f(x_n,\cdots,x_{n-k+1})}$
Published Date
2005 / June
Title
On the recursive sequence $x_{n+1}=\frac{\alpha_{1} x_n+\cdots+\alpha_{k} x_{n-k+1}}{A+f(x_n,\cdots,x_{n-k+1})}$
Author
Stevo Stević
Keyword
not available
Download
Download PDF
Pagination
173-183
Abstract
We investigate the behavior of solutions of the difference equation $x_{n+1}=\frac{ \alpha_1 x_n+\cdots+ \alpha_k x_{n-k+1}}{A+f(x_n,..., x_{n-k+1})}$, $n \ge k-1, k \in N$, where the parameters $\alpha_i, i = 1, \ldots , k$, and initial conditions ${x_0, x_1, \ldots , x_{k?1}}$ are nonegative real numbers, $A > 0$ and where the function f satisfies certain additional conditions. The main result in this note solves and generelizes an open problem in [11]. In the proof of the main result we do not use smoothness of the function $f$.
AMS Subject
Classification
not available
Received
2003-12-30
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy