Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2011 / March Volume 6 No.1
Oscillatory and asymptotic behavior of $\frac{dx}{dt}+Q(t)G(x(t-\sigma(t)))=f(t)$
Published Date
2011 / March
Title
Oscillatory and asymptotic behavior of $\frac{dx}{dt}+Q(t)G(x(t-\sigma(t)))=f(t)$
Author
Pitambar Das, P. K. Panda
Keyword
Nonlinear, non homogeneous, delay differential equation, oscillation, asymptotic behaviour, Nonlinear, non homogeneous, delay differential equation, oscillation, asymptotic behaviour
Download
Download PDF
Pagination
97-113
Abstract
Consider the equation $$\frac{dx}{dt}+Q(t)G(x(t-\sigma(t)))=f(t)\qquad{(*)}$$ where $\textit{f},\sigma,\textit{Q}\in C ([0,\infty),[0,\infty)),G\in C(R,R),G(-x)=-G(x),xG(x)> o $ for $ x \neq 0,$ $\textit{G}$ is non-decreasing, $t >\sigma(t)$, $\sigma(t)$ is decreasing and $ t-\sigma(t)\rightarrow\infty$ as $t\rightarrow\infty$. When$ f(t)\equiv 0$, a sufficient condition in terms of the constants \begin{eqnarray*} k&=&\liminf_{t\rightarrow\infty}{\large\int_{t-\sigma(t)}^{t}{Q(s)ds}}\{\hbox{and}} \qquad L &=&\limsup_{t\rightarrow{\infty}}{\large\int_{t-\sigma(t)}^{t}{Q(s)ds}} \end{eqnarray*} is established for all solutions of $(*)$ to be oscillatory.The present results improve the earlier results of the literature by both weakening the conditions and considering a general non linear and non-homogeneous differential equation.
AMS Subject
Classification
34K11,34C10
Received
2010-10-05
Accepted
2010-10-05
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy