Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2013 / December Volume 8 No.4
Persistency of Analyticity For Nonlinear Wave Equations: An Energy-Like Approach
Published Date
2013 / December
Title
Persistency of Analyticity For Nonlinear Wave Equations: An Energy-Like Approach
Author
Yanqiu Guo, Edriss S. Titi
Keyword
Gevrey class regularity, propagation of analyticity, nonlinear wave equations, Gevrey class regularity, propagation of analyticity, nonlinear wave equations
Download
Download PDF
Pagination
445-479
Abstract
We study the persistence of the Gevrey class regularity of solutions to nonlinear wave equations with real analytic nonlinearity. Specifically, it is proven that the solution remains in a Gevrey class, with respect to some of its spatial variables, during its whole life-span, provided the initial data is from the same Gevrey class with respect to these spatial variables. In addition, for the special Gevrey class of analytic functions, we find a lower bound for the radius of the spatial analyticity of the solution that might shrink either algebraically or exponentially, in time, depending on the structure of the nonlinearity. The standard $L^2$ theory for the Gevrey class regularity is employed; we also employ energy-like methods for a generalized version of Gevrey classes based on the $\ell^1$ norm of Fourier transforms (Wiener algebra). After careful comparisons, we observe an indication that the $\ell^1$ approach provides a better lower bound for the radius of analyticity of the solutions than the $L^2$ approach. We present our results in the case of period boundary conditions, however, by employing exactly the same tools and proofs one can obtain similar results for the nonlinear wave equations and the nonlinear Schr\"odinger equation, with real analytic nonlinearity, in certain domains and manifolds without physical boundaries, such as the whole space $\mathbb{R}^n$, or on the sphere $\mathbb{S}^{n-1}$.
AMS Subject
Classification
35L05, 35L72, 37K10
Received
2013-08-11
Accepted
2013-08-11
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy