Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2013 / September Volume 8 No.3
The $\overline\partial$-Equation on An Annulus with Mixed Boundary Conditions
Published Date
2013 / September
Title
The $\overline\partial$-Equation on An Annulus with Mixed Boundary Conditions
Author
Xiaoshan Li, Mei-Chi Shaw
Keyword
Cauchy-Riemann equations, pseudo-concave domains, $\overline\partial$-Dirichlet condition, $\overline\partial$-Neumann condition, Cauchy-Riemann equations, pseudo-concave domains, $\overline\partial$-Dirichlet condition, $\overline\partial$-Neumann condition
Download
Download PDF
Pagination
399-411
Abstract
In this paper we study the $\overline\partial$-equation with mixed boundary conditions on an annulus $\Omega=\Omega_1\setminus\overline \Omega_2\subset\subset \mathbb{C}^n$ between two pseudoconvex domains satisfying $\Omega_2\subset\subset\Omega_1$. We prove $L^2$-existence theorems for $\overline\partial_{\rm mix}$ for any $\overline\partial_{\rm mix}$-closed $(p,q)$-form with $2\leq q\leq n$. For the critical case when $q=1$ on the annulus $\Omega$, we shwo that the space of harmonic forms is infinite dimensional and $H^{(p,1)}_{\overline\partial_{\rm mix}, L^2}(\Omega)$ is isomorphic to the quotient of $H_{W^1}^{(p,0)}(\Omega_2)$ with coefficients in $W^1(\Omega_2) $ over the Bergman space $H_{L^2}^{(p,0)}(\Omega_1)$ on the pseudoconvex domain $\Omega_1$. Boundary regularity for the corresponding operators is also obtained.
AMS Subject
Classification
32W05, 35N15, 58J32
Received
2013-09-01
Accepted
2013-09-01
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy