Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2024 / September Volume 19 No.3
Lamb's Problem
Published Date
2024 / September
Title
Lamb's Problem
Author
Haitao Wang, Shih-Hsien Yu, Xiongtao Zhang
Keyword
Rayleigh wave
Download
Download PDF
Pagination
213-240
Abstract

We derive an explicit solution representation for the Lamb's problem. The solution formula is given in terms of the fundamental solutions of the d'Alembert wave equations, the Kirchhoff's formula in 3-D and the Hadamard's formula in 2-D, when the Poisson ratio $\frac{1}{2} \lambda /(\lambda+\mu)$ is less than or equal to a critical value $\sigma^*$. The critical Poisson ratio value $\sigma^*$ is derived in terms of the Lamé constants $(\lambda,\mu)$. Our solution formula yields rich surface wave patterns as a consequence of the coupling of 2D and 3D wave structures. These surface wave patterns are much richer than the Rayleigh waves discussed by the pioneers of the field, [19, 8]. Our analysis originates from the notions of master relationship in [11], Laplace-Fourier path in [12], and the determinant for surface waves in [13]. We use these notions to form an LY algorithm and apply this algorithm to solve the Lamb's problem completely.

DOI
10.21915/BIMAS.2024302
https://doi.org/10.21915/BIMAS.2024302
AMS Subject
Classification
35Exx
Received
2024-07-30
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy