Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2006 / September Volume 1 No.3
Approximating fixed points of nonexpansive mappings
Published Date
2006 / September
Title
Approximating fixed points of nonexpansive mappings
Author
Stevo Stević
Keyword
Iteration method, fixed point, nonexpansive mapping, sequence, Iteration method, fixed point, nonexpansive mapping, sequence
Download
Download PDF
Pagination
437-450
Abstract
Let $D$ be a subset of a normed space $X$ and $T: D \to X$ be a nonexpansive mapping. In this paper we consider the following iteration method which generalizes Ishikawa iteration process:
$x_{n+1} = t^{(1)}_n T(t^{(2)}_n T(\dots T(t^{(k)}_n Tx_n + (1 - t^{(k)}_n)x_n + u^{(k)}_n) + \dots)$
$+ (1-t^{(2)}_n)x_n + u^{(2)}_n) + (1 - t^{(1)}_n)x_n + u^{(1)}_n $,
$n=1, 2, 3 \dots$, where $0 \le t^{(i)}_n \le 1$ for all $n \ge 1$ and $i = 1, \dots, k$, and sequence {$x_n$} and {$u^{(i)}_n$}, $i=1, \dots, k$, are in $D$.
We improve several results in [2], concerning approximation of fixed points of $T$.
AMS Subject
Classification
47H10
Received
2005-02-05
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy