Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2014 / December Volume 9 No.4
A Bogomolov Type Statement for Functions Fields
Published Date
2014 / December
Title
A Bogomolov Type Statement for Functions Fields
Author
Dragos Ghioca
Keyword
heights for function fields, the Bogomolov conjecture, heights for function fields, the Bogomolov conjecture
Download
Download PDF
Pagination
641-656
Abstract
Let $ \ k \ $ be a an algebraically closed field of arbitrary characteristic, and we let $h:\mathbb{A}^n(\overline{k(t)})\longrightarrow \mathbb{R}_{\ge 0}$ be the usual Weil height for the $n$-dimensional affine space corresponding to the function field $k(t)$ (extended to its algebraic closure). We prove that for any affine variety $V\subset \mathbb{A}^n$ defined over $\overline{k(t)}$, there exists a positive real number $\epsilon:=\epsilon(V)$ such that if $P\in V(\overline{k(t)})$ and $h(P)<\epsilon$, then $P\in V(k)$.
AMS Subject
Classification
11G50, 14G17, 11G10.
Received
2014-02-15
Accepted
2014-02-27
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy