2018 / March Volume 13 No.1
Involutions on the Affine Grassmannian and Moduli Spaces of Principal Bundles
| Published Date |
2018 / March
|
|---|---|
| Title | Involutions on the Affine Grassmannian and Moduli Spaces of Principal Bundles |
| Author | |
| Keyword | |
| Download | |
| Pagination | 43-97 |
| Abstract | Let $G$ be a simply connected semisimple group over $\mathbb{C}$. We show that a certain involution of an open subset of the affine Grassmannian of $G$, defined previously by Achar and the author, corresponds to the action of the nontrivial Weyl group element of $\mathrm{SL}(2)$ on the framed moduli space of $\mathbb{G}_m$-equivariant principal $G$-bundles on $\mathbb{P}^2$. As a result, the fixed-point set of the involution can be partitioned into strata indexed by conjugacy classes of homomorphisms $N\to G$ where $N$ is the normalizer of $\mathbb{G}_m$ in $\mathrm{SL}(2)$. When $G=\mathrm{SL}(r)$, the strata are Nakajima quiver varieties $\mathfrak{M}_0^{\mathrm{reg}}(\mathbf{v},\mathbf{w})$ of type D.
|
| DOI | |
| AMS Subject Classification |
Primary 14J60; Secondary 14M15, 17B08.
|
| Received |
2017-04-13
|
| Accepted |
2017-04-13
|