Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2017 / December Volume 12 No.4
Local Demailly-Bouche's holomorphic morse inequalities
Published Date
2017 / December
Title
Local Demailly-Bouche's holomorphic morse inequalities
Author
Zhiwei Wang
Keyword
Bergman kernel, Local holomorphic Morse inequalities, Localization, Bergman kernel, Local holomorphic Morse inequalities, Localization
Download
Download PDF
Pagination
339-360
Abstract
Let $(X,\omega)$ be a Hermitian manifold and let $(E,h^E)$, $(F,h^F)$ be two Hermitian holomorphic line bundle over $X$. Suppose that the maximal rank of the Chern curvature $c(E)$ of $E$ is $r$, and the kernel of $c(E)$ is foliated. In this paper, local versions of Demailly-Bouche's holomorphic Morse inequalities are presented. The local version holds on any Hermitian manifold regardless of compactness and completeness. The proof is a generalization of Berman's method to derive Demailly's holomorphic Morse inequalities.
DOI
10.21915/BIMAS.2017404
https://doi.org/10.21915/BIMAS.2017404
AMS Subject
Classification
32A25, 32L10, 32L20
Received
2017-06-22
Accepted
2017-12-03
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy