Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2016 / September Volume 11 No.3
The Second Coefficient of the Asymptotic Expansion of the Weighted Bergman Kernel for (0,q) Forms on $\mathbb{C^{n}}$
Published Date
2016 / September
Title
The Second Coefficient of the Asymptotic Expansion of the Weighted Bergman Kernel for (0,q) Forms on $\mathbb{C^{n}}$
Author
Chin-Yu Hsiao
Keyword
Bergman kernel asymptotics, Kodaira Laplacian, the method of stationary phase., Bergman kernel asymptotics, Kodaira Laplacian, the method of stationary phase.
Download
Download PDF
Pagination
521-570
Abstract
Let $\phi\in C^\infty(\mathbb{C}^n)$ be a given real valued function. We assume that $\partial\bar\partial\phi$ is non-degenerate of constant signature $(n_-,n_+)$ on $\mathbb{C}^n$. When $q=n_-$, it is well-known that the Bergman kernel for $(0,q)$ forms with respect to the $k$-th weight $e^{-2k\phi}$, $k>0$, admits a full asymptotic expansion in $k$. In this paper, we compute the trace of the second coefficient of the asymptotic expansion on the diagonal.
DOI
10.21915/BIMAS.2016302
https://doi.org/10.21915/BIMAS.2016302
AMS Subject
Classification
58J40, 32C15.
Received
2016-08-07
Accepted
2016-07-22
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy