Bulletin, Institute of Mathematics, Academia Sinica
logo-Bulletin, Institute of Mathematics, Academia Sinica

Bulletin, Institute of Mathematics, Academia Sinica
logo_m-Bulletin, Institute of Mathematics, Academia Sinica

    Jump To中央區塊/Main Content :::
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us
search
Bulletin of the Institute of
Mathematics Academia Sinica
NEW SERIES
  • Home
  • Archives
  • Bulletin of the Institute of Mathematics Academia Sinica (New Series)
  • Facebook
  • line
  • email
  • Twitter
  • Print
2015 / June Volume 10 No.2
The Steady Boltzmann and Navier-Stokes Equations
Published Date
2015 / June
Title
The Steady Boltzmann and Navier-Stokes Equations
Author
Francois Golse, K. Aoki, S. Kosuge
Keyword
Steady Boltzmann equation, Steady Navier-Stokes equation, Heat diu- sion, Viscous heating, Periodic solutions
Download
Download PDF
Pagination
205-257
Abstract
The paper discusses the similarities and the differences in the mathematical theories of the steady Boltzmann and incompressible Navier-Stokes equations posed in a bounded domain. First we discuss two different scaling limits in which solutions of the steady Boltzmann equation have an asymptotic behavior described by the steady Navier-Stokes Fourier system. Whether this system includes the viscous heating term depends on the ratio of the Froude number to the Mach number of the gas flow. While the steady Navier-Stokes equations with smooth divergence-free external force always have at least one smooth solutions, the Boltzmann equation with the same external force set in the torus, or in a bounded domain with specular reflection of gas molecules at the boundary may fail to have any solution, unless the force field is identically zero. Viscous heating seems to be of key importance in this situation. The nonexistence of any steady solution of the Boltzmann equation in this context seems related to the increase of temperature for the evolution problem, a phenomenon that we have established with the help of numerical simulations on the Boltzmann equation and the BGK model.
AMS Subject
Classification
5Q30, 35Q20 (76P05, 76D05, 82C40)
Received
2015-05-21
Accepted
2015-05-11
  • Editorial Board
  • Archives
  • Special Issues
  • Submission
  • Subscription
  • Contact Us

Institute of Mathematics, Academia Sinica 6th Floor, Astronomy‐Mathematics Building, No. 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan R.O.C.

Tel: +886‐2‐2368‐5999 ext. 382 Fax: +886‐2‐2368‐9771 Email: bulletin@math.sinica.edu.tw

© Copyright 2023. Math Sinica All Rights Reserved.Privacy Policy & Security Policy